
Milos Pjanic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2273120/publications.pdf Version: 2024-02-01

MILOS PIANIC

#	Article	IF	CITATIONS
1	Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nature Medicine, 2019, 25, 1280-1289.	30.7	494
2	Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nature Communications, 2016, 7, 12092.	12.8	123
3	Coronary Artery Disease Associated Transcription Factor TCF21 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap. PLoS Genetics, 2015, 11, e1005155.	3.5	86
4	Genetic Regulatory Mechanisms of Smooth Muscle Cells Map to Coronary Artery Disease Risk Loci. American Journal of Human Genetics, 2018, 103, 377-388.	6.2	76
5	Coronary Disease-Associated Gene <i>TCF21</i> Inhibits Smooth Muscle Cell Differentiation by Blocking the Myocardin-Serum Response Factor Pathway. Circulation Research, 2020, 126, 517-529.	4.5	67
6	Environment-Sensing Aryl Hydrocarbon Receptor Inhibits the Chondrogenic Fate of Modulated Smooth Muscle Cells in Atherosclerotic Lesions. Circulation, 2020, 142, 575-590.	1.6	57
7	TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genetics, 2017, 13, e1006750.	3.5	52
8	Nuclear factor I revealed as family of promoter binding transcription activators. BMC Genomics, 2011, 12, 181.	2.8	48
9	TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Medicine, 2019, 11, 23.	8.2	43
10	Characterization of TCF21 Downstream Target Regions Identifies a Transcriptional Network Linking Multiple Independent Coronary Artery Disease Loci. PLoS Genetics, 2015, 11, e1005202.	3.5	41
11	Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genetics, 2018, 14, e1007681.	3.5	41
12	The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ, 2017, 5, e3809.	2.0	41
13	Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases. PLoS Genetics, 2020, 16, e1008538.	3.5	40
14	Advances in Transcriptomics. Circulation Research, 2018, 122, 1200-1220.	4.5	38
15	Genetics and Genomics of Coronary Artery Disease. Current Cardiology Reports, 2016, 18, 102.	2.9	31
16	Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus. PLoS Genetics, 2018, 14, e1007755.	3.5	30
17	Nuclear Factor I genomic binding associates with chromatin boundaries. BMC Genomics, 2013, 14, 99.	2.8	24
18	Molecular mechanisms of coronary disease revealed using quantitative trait loci for TCF21 binding, chromatin accessibility, and chromosomal looping. Genome Biology, 2020, 21, 135.	8.8	16

MILOS PJANIC

#	Article	IF	CITATIONS
19	From Locus Association to Mechanism of Gene Causality. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2079-2080.	2.4	12
20	CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocrine Disorders, 2019, 19, 115.	2.2	6
21	Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation. IScience, 2019, 20, 42-59.	4.1	6
22	Abstract 21021: Functional Regulatory Mechanism of Smooth Muscle Cell-Restricted <i>LMOD1</i> Coronary Artery Disease Locus. Circulation, 2017, 136, .	1.6	1
23	Abstract 62: Molecular Basis of Regulatory Variation at Coronary Heart Disease-Associated Loci. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
24	Transcription factor regulation as a mechanism of confounding effects between distinct human traits. F1000Research, 0, 4, 1349.	1.6	0