
Haitao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227285/publications.pdf Version: 2024-02-01

Ηλιτλο ΙλΝΟ

#	Article	IF	CITATIONS
1	Zero-index and hyperbolic metacavities: fundamentals and applications. Journal Physics D: Applied Physics, 2022, 55, 083001.	2.8	33
2	Efficient and stable wireless power transfer based on the non-Hermitian physics. Chinese Physics B, 2022, 31, 010307.	1.4	10
3	Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal. Optics Express, 2022, 30, 12104.	3.4	15
4	Photonic Dirac nodal-line semimetals realized by a hypercrystal. Physical Review Research, 2022, 4, .	3.6	6
5	Ultra-broadband near-field magnetic shielding realized by the Halbach-like structure. Applied Physics Letters, 2022, 120, .	3.3	2
6	Acoustic Beam Splitting and Cloaking Based on a Compressibility-Near-Zero Medium. Physical Review Applied, 2022, 17, .	3.8	5
7	Rotation controlled topological edge states in a trimer chain composed of meta-atoms. New Journal of Physics, 2022, 24, 063001.	2.9	14
8	Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials. Photonics, 2022, 9, 411.	2.0	1
9	Tailoring electromagnetic responses in a coupled-grating system with combined modulation of near-field and far-field couplings. Physical Review B, 2022, 105, .	3.2	21
10	Abnormal Wave Propagation in Tilted Linearâ€Crossing Metamaterials. Advanced Photonics Research, 2021, 2, 2000071.	3.6	10
11	Significant enhancement of magnetic shielding effect by using the composite metamaterial composed of mu-near-zero media and ferrite. EPJ Applied Metamaterials, 2021, 8, 13.	1.5	4
12	Actively controlled asymmetric edge states for directional wireless power transfer. Optics Express, 2021, 29, 7844.	3.4	16
13	Observation of topological bound states in a double Su-Schrieffer-Heeger chain composed of split ring resonators. Physical Review Research, 2021, 3, .	3.6	25
14	Sensitivity of topological edge states in a non-Hermitian dimer chain. Photonics Research, 2021, 9, 574.	7.0	34
15	Reconfigurable magnetic near-field distributions based on the coding metasurfaces in MHz band. Optics Express, 2021, 29, 13908.	3.4	3
16	Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Advanced Photonics, 2021, 3, .	11.8	56
17	Ultra-sensitive passive wireless sensor exploiting high-order exceptional point for weakly coupling detection. New Journal of Physics, 2021, 23, 063008.	2.9	15
18	Miniaturized Backward Coupler Realized by the Circuitâ€Based Planar Hyperbolic Waveguide. Advanced Photonics Research, 2021, 2, 2100035.	3.6	6

Haitao Jiang

#	Article	IF	CITATIONS
19	Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-HĀ ¤ chen shifts with perfect reflection. Physical Review A, 2021, 104, .	2.5	51
20	Wireless Power Transfer via Topological Modes in Dimer Chains. Physical Review Applied, 2021, 15, .	3.8	39
21	Observation of Giant Extrinsic Chirality Empowered by Quasi-Bound States in the Continuum. Physical Review Applied, 2021, 16, .	3.8	32
22	Designing All-Electric Subwavelength Metasources for Near-Field Photonic Routings. Physical Review Letters, 2020, 125, 157401.	7.8	27
23	Giant Goos-HÃ ¤ chen shift with a high reflectance assisted by interface states in photonic heterostructures. Physical Review A, 2020, 101, .	2.5	26
24	Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials. JPhys Photonics, 2020, 2, 011001.	4.6	14
25	Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics, 2020, 127, .	2.5	157
26	Circuit-Based Magnetic Hyperbolic Cavities. Physical Review Applied, 2020, 13, .	3.8	15
27	Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Physical Review B, 2020, 101, .	3.2	22
28	Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Optics Express, 2020, 28, 17064.	3.4	11
29	Effective optical nihility media realized by one-dimensional photonic crystals containing hyperbolic metamaterials. Optics Express, 2020, 28, 33198.	3.4	7
30	Giant Enhancement of the Goos-HÃ ¤ chen Shift Assisted by Quasibound States in the Continuum. Physical Review Applied, 2019, 12, .	3.8	139
31	Observation of a Topological Edge State in the Xâ€ray Band. Laser and Photonics Reviews, 2019, 13, 1800339.	8.7	31
32	Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Optics Express, 2019, 27, 5326.	3.4	48
33	Wide-angle ultrasensitive biosensors based on edge states in heterostructures containing hyperbolic metamaterials. Optics Express, 2019, 27, 24835.	3.4	26
34	Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths. Applied Physics Letters, 2018, 112, .	3.3	45
35	Focusing and Super-Resolution with Partial Cloaking Based on Linear-Crossing Metamaterials. Physical Review Applied, 2018, 10, .	3.8	30
36	Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Physical Review Applied, 2018, 10, .	3.8	92

Haitao Jiang

#	Article	IF	CITATIONS
37	Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect. Journal of Applied Physics, 2018, 124, .	2.5	38
38	Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials. Physical Review B, 2018, 97, .	3.2	35
39	Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Optics Express, 2018, 26, 627.	3.4	66
40	Experimental demonstration of the robust edge states in a split-ring-resonator chain. Optics Express, 2018, 26, 12891.	3.4	32
41	Actively Controlling the Topological Transition of Dispersion Based on Electrically Controllable Metamaterials. Applied Sciences (Switzerland), 2018, 8, 596.	2.5	24
42	Photonic Spin Hall Effect in Waveguides Composed of Two Types of Single-Negative Metamaterials. Scientific Reports, 2017, 7, 7742.	3.3	40
43	Dispersionless slow wave in waveguides composed of two types of single-negative metamaterials. , 2017, , .		0
44	Loss-induced topological transition of dispersion in metamaterials. Journal of Applied Physics, 2016, 119, .	2.5	30
45	Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals. Optics Express, 2016, 24, 18580.	3.4	27
46	Tuning the hybridization bandgap by meta-molecules with in-unit interaction. Journal of Applied Physics, 2015, 118, .	2.5	2
47	Experimental verification of loss-induced field enhancement and collimation in anisotropic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi>-near-zero metamaterials. Physical Review B, 2015, 91, .</mml:math 	3.2	21
48	Quantum well effect based on hybridization bandgap in deep subwavelength coupled meta-atoms. Physica B: Condensed Matter, 2015, 472, 1-5.	2.7	3
49	Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Optics Letters, 2015, 40, 3380.	3.3	33
50	Collective coupling of randomly dispersed oscillators with cavities filled with zero-index metamaterials. European Physical Journal B, 2014, 87, 1.	1.5	1
51	Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials. Applied Physics Letters, 2013, 103, .	3.3	58
52	Light tunneling effect tuned by a meta-interface with electromagnetically-induced-transparency-like properties. Applied Physics Letters, 2013, 102, .	3.3	7
53	Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials. Applied Physics Letters, 2013, 102, .	3.3	17
54	Controlling the spectral width in compound waveguide grating structures. Optics Letters, 2013, 38, 163.	3.3	46

HAITAO JIANG

#	Article	IF	CITATIONS
55	Microwave collimation based on zero index metamaterials with Dirac point. Optics Letters, 2012, 37, 4654.	3.3	6
56	Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution. Physical Review B, 2011, 83, .	3.2	51
57	Zero-reflection metal slabs: A mechanism of light tunneling in metamaterials. Applied Physics A: Materials Science and Processing, 2011, 103, 567-570.	2.3	2
58	Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals. Journal of Applied Physics, 2010, 107, .	2.5	26
59	Electromagnetic tunneling in a sandwich structure containing single negative media. Physical Review E, 2009, 79, 026601.	2.1	42
60	Experimental investigation of interface states in photonic crystal heterostructures. Physical Review E, 2008, 78, 026607.	2.1	64
61	Light Tunneling In Multilayer Structures Consisting of Single-Negative Materials. , 2007, , .		Ο
62	Multichanneled filter based on a branchy defect in microstrip photonic crystal. Applied Physics Letters, 2006, 88, 081106.	3.3	19
63	Composite High-Q Micrsostrip Resonator Using Effective Highly Dispersive Materials. , 2006, , .		0
64	Tunneling modes of photonic heterostructures consisting of single-negative materials. Applied Physics Letters, 2006, 88, 211112.	3.3	76
65	Localized gap-edge fields of one-dimensional photonic crystals with anε-negative and aμ-negative defect. Physical Review E, 2006, 73, 046601.	2.1	23
66	Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials. Journal of Applied Physics, 2005, 98, 013101.	2.5	41
67	Properties of one-dimensional photonic crystals containing single-negative materials. Physical Review E, 2004, 69, 066607.	2.1	265
68	Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Applied Physics Letters, 2003, 83, 5386-5388.	3.3	320