Krause Johannes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/227254/publications.pdf Version: 2024-02-01

		5876	4628
178	34,521	81	170
papers	citations	h-index	g-index
213	213	213	21191
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	6.0	3,588
2	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	13.7	1,537
3	Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015, 522, 207-211.	13.7	1,435
4	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	13.7	1,179
5	Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015, 528, 499-503.	13.7	1,160
6	Genetic Analyses from Ancient DNA. Annual Review of Genetics, 2004, 38, 645-679.	3.2	1,084
7	Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14616-14621.	3.3	799
8	Genomic insights into the origin of farming in the ancient Near East. Nature, 2016, 536, 419-424.	13.7	733
9	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	13.7	729
10	Analysis of one million base pairs of Neanderthal DNA. Nature, 2006, 444, 330-336.	13.7	671
11	The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 2010, 464, 894-897.	13.7	659
12	A draft genome of Yersinia pestis from victims of the Black Death. Nature, 2011, 478, 506-510.	13.7	619
13	Sequencing and Analysis of Neanderthal Genomic DNA. Science, 2006, 314, 1113-1118.	6.0	547
14	A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology, 2013, 23, 553-559.	1.8	540
15	Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 2014, 514, 494-497.	13.7	506
16	A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 2008, 134, 416-426.	13.5	503
17	The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 2018, 555, 190-196.	13.7	503
18	The Derived FOXP2 Variant of Modern Humans Was Shared with Neandertals. Current Biology, 2007, 17, 1908-1912	1.8	487

#	Article	IF	CITATIONS
19	The genomic history of southeastern Europe. Nature, 2018, 555, 197-203.	13.7	479
20	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	4.2	469
21	Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science, 2009, 325, 318-321.	6.0	456
22	Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs. Science, 2013, 342, 871-874.	6.0	438
23	Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLoS ONE, 2012, 7, e34131.	1.1	428
24	Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Research, 2010, 38, e87-e87.	6.5	362
25	Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2229-2234.	3.3	349
26	The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731.	2.8	339
27	Genome-Wide Comparison of Medieval and Modern <i>Mycobacterium leprae</i> . Science, 2013, 341, 179-183.	6.0	313
28	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	13.5	308
29	EAGER: efficient ancient genome reconstruction. Genome Biology, 2016, 17, 60.	3.8	305
30	Neanderthals in central Asia and Siberia. Nature, 2007, 449, 902-904.	13.7	293
31	Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Current Biology, 2016, 26, 827-833.	1.8	277
32	Genomic insights into the peopling of the Southwest Pacific. Nature, 2016, 538, 510-513.	13.7	262
33	Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 2008, 8, 220.	3.2	261
34	Reconstructing the Deep Population History of Central and South America. Cell, 2018, 175, 1185-1197.e22.	13.5	259
35	Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 2010, 328, 723-725.	6.0	255
36	A Complete mtDNA Genome of an Early Modern Human from Kostenki, Russia. Current Biology, 2010, 20, 231-236.	1.8	252

#	Article	IF	CITATIONS
37	Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360, 111-114.	6.0	241
38	Genomic Sequencing of Pleistocene Cave Bears. Science, 2005, 309, 597-599.	6.0	221
39	Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nature Ecology and Evolution, 2018, 2, 520-528.	3.4	218
40	Genomic insights into the formation of human populations in East Asia. Nature, 2021, 591, 413-419.	13.7	216
41	Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of <i>Yersinia pestis</i> from victims of the Black Death. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E746-52.	3.3	211
42	Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nature Communications, 2017, 8, 16046.	5.8	211
43	Next-Generation Museomics Disentangles One of the Largest Primate Radiations. Systematic Biology, 2013, 62, 539-554.	2.7	204
44	Genetic origins of the Minoans and Mycenaeans. Nature, 2017, 548, 214-218.	13.7	203
45	The 5300-year-old <i>Helicobacter pylori</i> genome of the Iceman. Science, 2016, 351, 162-165.	6.0	200
46	Reconstructing the genetic history of late Neanderthals. Nature, 2018, 555, 652-656.	13.7	197
47	Ancient pathogen genomics as anÂemerging tool for infectious diseaseÂresearch. Nature Reviews Genetics, 2019, 20, 323-340.	7.7	195
48	Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2006, 439, 724-727.	13.7	194
49	Kinship-based social inequality in Bronze Age Europe. Science, 2019, 366, 731-734.	6.0	175
50	Learning about human population history from ancient and modern genomes. Nature Reviews Genetics, 2011, 12, 603-614.	7.7	172
51	The Neandertal genome and ancient DNA authenticity. EMBO Journal, 2009, 28, 2494-2502.	3.5	170
52	Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science, 2017, 357, 512-515.	6.0	169
53	The genetic prehistory of the Baltic Sea region. Nature Communications, 2018, 9, 442.	5.8	151
54	A Robust Framework for Microbial Archaeology. Annual Review of Genomics and Human Genetics, 2017, 18, 321-356.	2.5	144

#	Article	IF	CITATIONS
55	Historical Y.Âpestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics. Cell Host and Microbe, 2016, 19, 874-881.	5.1	142
56	Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science, 2018, 360, 548-552.	6.0	142
57	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	13.7	142
58	Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. ELife, 2016, 5, e12994.	2.8	139
59	Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10083-10088.	3.3	136
60	Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11248-E11255.	3.3	135
61	The genetic history of admixture across inner Eurasia. Nature Ecology and Evolution, 2019, 3, 966-976.	3.4	135
62	Insight into the evolution and origin of leprosy bacilli from the genome sequence of <i>Mycobacterium lepromatosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4459-4464.	3.3	134
63	Ancient genomes from northern China suggest links between subsistence changes and human migration. Nature Communications, 2020, 11, 2700.	5.8	133
64	Ancient DNA analysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	133
65	Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nature Communications, 2017, 8, 15694.	5.8	131
66	Virus Progeny of Murine Cytomegalovirus Bacterial Artificial Chromosome pSM3fr Show Reduced Growth in Salivary Glands due to a Fixed Mutation of MCK-2. Journal of Virology, 2011, 85, 10346-10353.	1.5	127
67	The Stone Age Plague and Its Persistence in Eurasia. Current Biology, 2017, 27, 3683-3691.e8.	1.8	125
68	A Dynamic 6,000-Year Genetic History of Eurasia's Eastern Steppe. Cell, 2020, 183, 890-904.e29.	13.5	124
69	Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nature Communications, 2018, 9, 2234.	5.8	123
70	Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics, 2016, 48, 1089-1093.	9.4	122
71	Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature, 2019, 570, 236-240.	13.7	118
72	The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genetics, 2018, 14, e1007155.	1.5	116

#	Article	IF	CITATIONS
73	Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nature Communications, 2019, 10, 4470.	5.8	113
74	Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications, 2019, 10, 590.	5.8	113
75	Understanding 6th-century barbarian social organization and migration through paleogenomics. Nature Communications, 2018, 9, 3547.	5.8	111
76	A High-Coverage <i>Yersinia pestis</i> Genome from a Sixth-Century Justinianic Plague Victim. Molecular Biology and Evolution, 2016, 33, 2911-2923.	3.5	109
77	Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. Royal Society Open Science, 2016, 3, 160239.	1.1	108
78	From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Research, 2008, 36, e5-e5.	6.5	105
79	Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. ELife, 2018, 7, .	2.8	101
80	Ancient <i>Yersinia pestis</i> genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12363-12372.	3.3	100
81	Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathogens, 2018, 14, e1006997.	2.1	98
82	Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nature Communications, 2020, 11, 939.	5.8	96
83	Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Science Advances, 2020, 6, eaaz5344.	4.7	92
84	A Molecular Approach to the Sexing of the Triple Burial at the Upper Paleolithic Site of DolnÃ- Věstonice. PLoS ONE, 2016, 11, e0163019.	1.1	92
85	Language continuity despite population replacement in Remote Oceania. Nature Ecology and Evolution, 2018, 2, 731-740.	3.4	91
86	Mining Metagenomic Data Sets for Ancient DNA: Recommended Protocols for Authentication. Trends in Genetics, 2017, 33, 508-520.	2.9	90
87	Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula. Current Biology, 2019, 29, 1169-1177.e7.	1.8	90
88	Differential preservation of endogenous human and microbial DNA in dental calculus and dentin. Scientific Reports, 2018, 8, 9822.	1.6	88
89	Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nature Communications, 2018, 9, 5018.	5.8	86
90	Genomic History of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell, 2020, 181, 1158-1175.e28.	13.5	86

6

#	Article	IF	CITATIONS
91	Early cave art and ancient DNA record the origin of European bison. Nature Communications, 2016, 7, 13158.	5.8	81
92	Multiplex amplification of ancient DNA. Nature Protocols, 2006, 1, 720-728.	5.5	78
93	Effect of X-ray irradiation on ancient DNA in sub-fossil bones – Guidelines for safe X-ray imaging. Scientific Reports, 2016, 6, 32969.	1.6	74
94	Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nature Communications, 2019, 10, 1218.	5.8	74
95	The evolution and changing ecology of the African hominid oral microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	74
96	Mining Herbaria for Plant Pathogen Genomes: Back to the Future. PLoS Pathogens, 2014, 10, e1004028.	2.1	72
97	Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nature Ecology and Evolution, 2020, 4, 324-333.	3.4	72
98	Paleolithic to Bronze Age Siberians Reveal Connections with First Americans and across Eurasia. Cell, 2020, 181, 1232-1245.e20.	13.5	71
99	Neandertal cannibalism and Neandertal bones used as tools in Northern Europe. Scientific Reports, 2016, 6, 29005.	1.6	70
100	Reconciling material cultures in archaeology with genetic data: The nomenclature of clusters emerging from archaeogenomic analysis. Scientific Reports, 2018, 8, 13003.	1.6	69
101	A Paleogenomic Reconstruction of the Deep Population History of the Andes. Cell, 2020, 181, 1131-1145.e21.	13.5	69
102	A genome sequence from a modern human skull over 45,000 years old from Zlatý kÅ ⁻ Å^ in Czechia. Nature Ecology and Evolution, 2021, 5, 820-825.	3.4	69
103	Mitochondrial DNA of an Iberian Neandertal suggests a population affinity with other European Neandertals. Current Biology, 2006, 16, R629-R630.	1.8	68
104	HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biology, 2019, 20, 280.	3.8	67
105	The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 2021, 599, 256-261.	13.7	65
106	Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan. Current Biology, 2019, 29, 2526-2532.e4.	1.8	64
107	Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Science Advances, 2019, 5, eaax0061.	4.7	64
108	Ten millennia of hepatitis B virus evolution. Science, 2021, 374, 182-188.	6.0	64

#	Article	IF	CITATIONS
109	Complete Mitochondrial Genomes Reveal Neolithic Expansion into Europe. PLoS ONE, 2012, 7, e32473.	1.1	61
110	Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics, 2014, 15, 270.	1.2	60
111	Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. Scientific Reports, 2019, 9, 4433.	1.6	60
112	Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Neglected Tropical Diseases, 2018, 12, e0006447.	1.3	58
113	The source of the Black Death in fourteenth-century central Eurasia. Nature, 2022, 606, 718-724.	13.7	58
114	Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Science Advances, 2020, 6, eaaz0183.	4.7	56
115	Genetic characterization of the ABO blood group in Neandertals. BMC Evolutionary Biology, 2008, 8, 342.	3.2	53
116	Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances, 2019, 5, eaaw5873.	4.7	52
117	Linkage Disequilibrium Extends Across Putative Selected Sites in FOXP2. Molecular Biology and Evolution, 2009, 26, 2181-2184.	3.5	51
118	Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nature Communications, 2020, 11, 1915.	5.8	50
119	Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 2021, 599, 41-46.	13.7	49
120	Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Scientific Reports, 2018, 8, 14075.	1.6	48
121	Grey wolf genomic history reveals a dual ancestry of dogs. Nature, 2022, 607, 313-320.	13.7	48
122	Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Current Biology, 2020, 30, 3788-3803.e10.	1.8	47
123	Dynamic changes in genomic and social structures in third millennium BCE central Europe. Science Advances, 2021, 7, .	4.7	46
124	The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Scientific Reports, 2017, 7, 15644.	1.6	44
125	Genomic insights into the early peopling of the Caribbean. Science, 2020, 369, 456-460.	6.0	44
126	The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect. Science Advances, 2021, 7, eabi7673.	4.7	44

#	Article	IF	CITATIONS
127	Insights into human history from the first decade of ancient human genomics. Science, 2021, 373, 1479-1484.	6.0	41
128	A systematic investigation of human DNA preservation in medieval skeletons. Scientific Reports, 2020, 10, 18225.	1.6	39
129	Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Science Advances, 2021, 7, .	4.7	39
130	Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia. Science Advances, 2021, 7, eabi7038.	4.7	39
131	Parallel detection of ancient pathogens via array-based DNA capture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130375.	1.8	38
132	Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annual Review of Microbiology, 2019, 73, 639-666.	2.9	36
133	Genome of a middle Holocene hunter-gatherer from Wallacea. Nature, 2021, 596, 543-547.	13.7	35
134	Rewriting the Central European Early Bronze Age Chronology: Evidence from Large-Scale Radiocarbon Dating. PLoS ONE, 2015, 10, e0139705.	1.1	34
135	Origin and Health Status of First-Generation Africans from Early Colonial Mexico. Current Biology, 2020, 30, 2078-2091.e11.	1.8	34
136	Yersinia pestis: New Evidence for an Old Infection. PLoS ONE, 2012, 7, e49803.	1.1	33
137	Stone Age <i>Yersinia pestis</i> genomes shed light on the early evolution, diversity, and ecology of plague. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116722119.	3.3	31
138	Central European Woolly Mammoth Population Dynamics: Insights from Late Pleistocene Mitochondrial Genomes. Scientific Reports, 2017, 7, 17714.	1.6	30
139	2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biology, 2020, 18, 108.	1.7	29
140	Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of <i>Yersinia pestis</i> on Human Immunity Genes. Molecular Biology and Evolution, 2021, 38, 4059-4076.	3.5	29
141	Mitochondrial Genomes of Giant Deers Suggest their Late Survival in Central Europe. Scientific Reports, 2015, 5, 10853.	1.6	28
142	Ancient genome-wide analyses infer kinship structure in an Early Medieval Alemannic graveyard. Science Advances, 2018, 4, eaao1262.	4.7	28
143	Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus' evolution. BMC Biology, 2020, 18, 136.	1.7	28
144	Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 2022, 185, 1402-1413.e21.	13.5	26

#	Article	IF	CITATIONS
145	Genetic Time Travel. Genetics, 2016, 203, 9-12.	1.2	23
146	Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Scientific Reports, 2021, 11, 15005.	1.6	23
147	Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources. Journal of Visualized Experiments, 2009, , 1573.	0.2	22
148	Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nature Communications, 2022, 13, 1195.	5.8	22
149	Emergence and intensification of dairying in the Caucasus and Eurasian steppes. Nature Ecology and Evolution, 2022, 6, 813-822.	3.4	22
150	Screening ancient tuberculosis with qPCR: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130622.	1.8	21
151	Genomic Correlates of Atherosclerosis in Ancient Humans. Global Heart, 2014, 9, 203.	0.9	20
152	Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Communications Biology, 2021, 4, 113.	2.0	20
153	Functional analysis of human and chimpanzee promoters. Genome Biology, 2005, 6, R57.	13.9	19
154	Comparison of target enrichment strategies for ancient pathogen DNA. BioTechniques, 2020, 69, 455-459.	0.8	17
155	Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Molecular Biology and Evolution, 2022, 39, .	3.5	16
156	Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nature Ecology and Evolution, 2022, 6, 1024-1034.	3.4	15
157	Human mitochondrial DNA lineages in Iron-Age Fennoscandia suggest incipient admixture and eastern introduction of farming-related maternal ancestry. Scientific Reports, 2019, 9, 16883.	1.6	14
158	Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biology, 2021, 19, 220.	1.7	14
159	Genetic structure of Tibetan populations in Gansu revealed by forensic STR loci. Scientific Reports, 2017, 7, 41195.	1.6	12
160	Crops vs. animals: regional differences in subsistence strategies of Swiss Neolithic farmers revealed by stable isotopes. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	12
161	Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history. Nature Communications, 2022, 13, 2399.	5.8	12
162	Inferring genetic origins and phenotypic traits of George Bär, the architect of the Dresden Frauenkirche. Scientific Reports, 2018, 8, 2115.	1.6	11

#	Article	IF	CITATIONS
163	A Woman with a Sword? – Weapon Grave at Suontaka VesitorninmÃki, Finland. European Journal of Archaeology, 2022, 25, 42-60.	0.3	11
164	Performance and automation of ancient DNA capture with RNA hyRAD probes. Molecular Ecology Resources, 2022, 22, 891-907.	2.2	11
165	Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. IScience, 2022, 25, 104244.	1.9	11
166	Mass burial genomics reveals outbreak of enteric paratyphoid fever in the Late Medieval trade city Lübeck. IScience, 2021, 24, 102419.	1.9	9
167	Genome-wide autosomal, mtDNA, and Y chromosome analysis of King Bela III of the Hungarian Arpad dynasty. Scientific Reports, 2021, 11, 19210.	1.6	9
168	Genetic diversity of the HLA system in human populations from the Sierra (Andean), Oriente (Amazonian) and Costa (Coastal) regions of Ecuador. Human Immunology, 2018, 79, 639-650.	1.2	8
169	Human mobility at Tell Atchana (Alalakh), Hatay, Turkey during the 2nd millennium BC: Integration of isotopic and genomic evidence. PLoS ONE, 2021, 16, e0241883.	1.1	7
170	A 3,000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathogens, 2021, 17, e1009886.	2.1	7
171	Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland). Radiocarbon, 2019, 61, 1697-1709.	0.8	6
172	Who lived on the Swiss Plateau around 3300 BCE? Analyses of commingled human skeletal remains from the dolmen of Oberbipp. International Journal of Osteoarchaeology, 2019, 29, 786-796.	0.6	5
173	An ancient view on host pathogen interaction across time and space. Current Opinion in Immunology, 2020, 65, 65-69.	2.4	4
174	Response to "Ancient DNA and its contribution to understanding the human history of the Pacific Islands―(Bedford <i>etÂal</i> . 2018). Archaeology in Oceania, 2019, 54, 57-61.	0.3	3
175	Ancient human migrations. , 2013, , 45-64.		0
176	A58 Epidemic dynamics of ancient disease outbreaks. Virus Evolution, 2019, 5, .	2.2	0
177	Optimized Bone Sampling Protocols for the Retrieval of Ancient DNA from Archaeological Remains. Journal of Visualized Experiments, 2021, , .	0.2	0
178	The well-preserved Late Neolithic dolmen burial of Oberbipp, Switzerland. Construction, use, and post-depositional processes. Journal of Archaeological Science: Reports, 2022, 42, 103397.	0.2	0