Marie A Bogoyevitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2272403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimolecular Fluorescence Complementation: Quantitative Analysis of In Cell Interaction of Nuclear Transporter Importin α with Cargo Proteins. Methods in Molecular Biology, 2022, 2502, 215-233.	0.9	1
2	Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiological Reviews, 2020, 100, 1527-1594.	28.8	30
3	The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Research, 2020, 177, 104760.	4.1	255
4	The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways. Nature Communications, 2020, 11, 3343.	12.8	15
5	Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Scientific Reports, 2020, 10, 1557.	3.3	15
6	Subversion of Host Cell Mitochondria by RSV to Favor Virus Production is Dependent on Inhibition of Mitochondrial Complex I and ROS Generation. Cells, 2019, 8, 1417.	4.1	28
7	Oligonucleotide-directed STAT3 alternative splicing switch drives anti-tumorigenic outcomes in MCF10 human breast cancer cells. Biochemical and Biophysical Research Communications, 2019, 513, 1076-1082.	2.1	6
8	Pathogenic E2K mutation of doublecortin X (DCX) alters microtubule stabilisation and actin filament association. Biochemical and Biophysical Research Communications, 2019, 513, 540-545.	2.1	1
9	Doublecortin X (DCX) serine 28 phosphorylation is a regulatory switch, modulating association of DCX with microtubules and actin filaments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 638-649.	4.1	9
10	Respiratory syncytial virus co-opts host mitochondrial function to favour infectious virus production. ELife, 2019, 8, .	6.0	47
11	TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC Genomics, 2018, 19, 238.	2.8	12
12	Complementary proteomics strategies capture an ataxin-1 interactome in Neuro-2a cells. Scientific Data, 2018, 5, 180262.	5.3	8
13	c-Jun N-terminal kinase activity is required for efficient respiratory syncytial virus production. Biochemical and Biophysical Research Communications, 2017, 483, 64-68.	2.1	7
14	Mitochondrial protein p32/HAPB1/gC1qR/C1qbp is required for efficient respiratory syncytial virus production. Biochemical and Biophysical Research Communications, 2017, 489, 460-465.	2.1	25
15	Dynamic microtubule association of Doublecortin X (DCX) is regulated by its C-terminus. Scientific Reports, 2017, 7, 5245.	3.3	15
16	Quantifying the dynamics of the oligomeric transcription factor STAT3 by pair correlation of molecular brightness. Nature Communications, 2016, 7, 11047.	12.8	28
17	JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiology and Molecular Biology Reviews, 2016, 80, 793-835.	6.6	348
18	Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation. Cell Cycle, 2016, 15, 413-424.	2.6	26

#	Article	IF	CITATIONS
19	Opposing roles for JNK and Aurora A in regulating WD40-Repeat Protein 62 association with spindle microtubules. Journal of Cell Science, 2015, 128, 527-40.	2.0	41
20	Dual role of Src kinase in governing neuronal survival. Brain Research, 2015, 1594, 1-14.	2.2	15
21	Hyperosmotic stress sustains cytokine-stimulated phosphorylation of STAT3, but slows its nuclear trafficking and impairs STAT3-dependent transcription. Cellular Signalling, 2014, 26, 815-824.	3.6	5
22	Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members. Biochemical and Biophysical Research Communications, 2014, 446, 248-254.	2.1	17
23	Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 253-264.	4.1	10
24	The JNK1/JNK3 interactome – Contributions by the JNK3 unique N-terminus and JNK common docking site residues. Biochemical and Biophysical Research Communications, 2014, 453, 576-581.	2.1	10
25	Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 483-494.	4.1	31
26	Identification and characterization of bi-thiazole-2,2′-diamines as kinase inhibitory scaffolds. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1077-1088.	2.3	8
27	A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor. International Journal of Biochemistry and Cell Biology, 2013, 45, 1939-1950.	2.8	8
28	p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochemical Journal, 2013, 453, 381-391.	3.7	61
29	Characterization of a microtubuleâ€associated protein, doublecortin (DCX), as a substrate of câ€Jun Nâ€terminal Kinases (JNKs). FASEB Journal, 2013, 27, 1042.3.	0.5	0
30	Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochemical Journal, 2012, 447, 125-136.	3.7	48
31	WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression Journal of Cell Science, 2012, 125, 5096-109.	2.0	69
32	Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Biochemical Journal, 2011, 434, 399-413.	3.7	27
33	C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Molecular Neurodegeneration, 2011, 6, 57.	10.8	103
34	c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 463-475.	2.3	257
35	c-Jun N-terminal Kinase Phosphorylation of Stathmin Confers Protection against Cellular Stress. Journal of Biological Chemistry, 2010, 285, 29001-29013.	3.4	30
36	Inhibitors of c-Jun N-terminal kinases—JuNK no more?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 76-93.	2.3	114

MARIE A BOGOYEVITCH

#	Article	IF	CITATIONS
37	Changes in the Transcriptional Profile of Cardiac Myocytes Following Green Fluorescent Protein Expression. DNA and Cell Biology, 2007, 26, 727-736.	1.9	12
38	Gene expression profiling reveals complex changes following MEK-EE expression in cardiac myocytes. International Journal of Biochemistry and Cell Biology, 2007, 39, 349-365.	2.8	3
39	Necrotic death of neurons following an excitotoxic insult is prevented by a peptide inhibitor of c-jun N-terminal kinase. Journal of Neurochemistry, 2007, 102, 65-76.	3.9	31
40	A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding. Drug Discovery Today, 2007, 12, 622-633.	6.4	170
41	Contrasting actions of prolonged mitogen-activated protein kinase activation on cell survival. Biochemical and Biophysical Research Communications, 2006, 345, 843-850.	2.1	4
42	The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. BioEssays, 2006, 28, 923-934.	2.5	166
43	Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases. Microbiology and Molecular Biology Reviews, 2006, 70, 1061-1095.	6.6	488
44	Peptide inhibitors of protein kinases—discovery, characterisation and use. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1754, 79-99.	2.3	61
45	Therapeutic promise of JNK ATP-noncompetitive inhibitors. Trends in Molecular Medicine, 2005, 11, 232-239.	6.7	41
46	Reverse Two-hybrid Screening Identifies Residues of JNK Required for Interaction with the Kinase Interaction Motif of JNK-interacting Protein-1. Journal of Biological Chemistry, 2004, 279, 43178-43189.	3.4	25
47	Contribution of the Membrane-distal Tyrosine in Intracellular Signaling by the Granulocyte Colony-stimulating Factor Receptor. Journal of Biological Chemistry, 2004, 279, 326-340.	3.4	14
48	The Critical Features and the Mechanism of Inhibition of a Kinase Interaction Motif-based Peptide Inhibitor of JNK. Journal of Biological Chemistry, 2004, 279, 36327-36338.	3.4	54
49	An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovascular Research, 2004, 63, 208-216.	3.8	121
50	Counting on mitogen-activated protein kinases—ERKs 3, 4, 5, 6, 7 and 8. Cellular Signalling, 2004, 16, 1345-1354.	3.6	118
51	Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1697, 89-101.	2.3	231
52	Identification of the Critical Features of a Small Peptide Inhibitor of JNK Activity. Journal of Biological Chemistry, 2002, 277, 10987-10997.	3.4	189
53	Crossing the Membrane: Nonviral and Viral Delivery Methods for Use In Vitro and In Vivo. DNA and Cell Biology, 2002, 21, 855-856.	1.9	1
54	Taking the Cell by Stealth or Storm? Protein Transduction Domains (PTDs) as Versatile Vectors for Delivery. DNA and Cell Biology, 2002, 21, 879-894.	1.9	38

MARIE A BOGOYEVITCH

#	Article	IF	CITATIONS
55	Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochemical Journal, 1996, 314, 115-121.	3.7	158
56	Stimulation of the Stress-Activated Mitogen-Activated Protein Kinase Subfamilies in Perfused Heart. Circulation Research, 1996, 79, 162-173.	4.5	462
57	Endothelin-1, phorbol esters and phenylephrine stimulate MAP kinase activities in ventricular cardiomyocytes. FEBS Letters, 1993, 317, 271-275.	2.8	160
58	Mitogen-activated protein (MAP) kinase stimulation by phorbol esters and external load in the isolated perfused heart. Biochemical Society Transactions, 1993, 21, 356S-356S.	3.4	3
59	Acidic fibroblast growth factor or endothelin-1 stimulate the MAP kinase cascade in cardiac myocytes. Biochemical Society Transactions, 1993, 21, 358S-358S.	3.4	4
60	Effects of catecholamines on protein synthesis and cyclic AMP concentrations in the isolated working heart. Biochemical Society Transactions, 1991, 19, 276S-276S.	3.4	0