
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2271899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Routes for Synthesis of Zeolites. Chemical Reviews, 2014, 114, 1521-1543.	47.7	511
2	Porous polymer catalysts with hierarchical structures. Chemical Society Reviews, 2015, 44, 6018-6034.	38.1	476
3	pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polyelectrolyte for Drug Delivery. Chemistry of Materials, 2005, 17, 5999-6003.	6.7	475
4	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	12.6	470
5	Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers. Angewandte Chemie - International Edition, 2006, 45, 3090-3093.	13.8	422
6	Transesterification Catalyzed by Ionic Liquids on Superhydrophobic Mesoporous Polymers: Heterogeneous Catalysts That Are Faster than Homogeneous Catalysts. Journal of the American Chemical Society, 2012, 134, 16948-16950.	13.7	400
7	Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today, 2009, 4, 135-142.	11.9	386
8	Hierarchically structured zeolites: synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22, 17381.	6.7	372
9	Solvent-Free Synthesis of Zeolites from Solid Raw Materials. Journal of the American Chemical Society, 2012, 134, 15173-15176.	13.7	370
10	Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures. Journal of the American Chemical Society, 2001, 123, 5014-5021.	13.7	343
11	Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 984-992.	13.7	310
12	Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nature Catalysis, 2018, 1, 540-546.	34.4	297
13	Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society, 2015, 137, 5204-5209.	13.7	292
14	Synthesis of Heteroatom Substituted SBA-15 by the "pH-Adjusting―Method. Chemistry of Materials, 2004, 16, 486-492.	6.7	291
15	Wet-Chemistry Strong Metal–Support Interactions in Titania-Supported Au Catalysts. Journal of the American Chemical Society, 2019, 141, 2975-2983.	13.7	280
16	Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 2008, 20, 4533-4535.	6.7	278
17	Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chemical Communications, 2011, 47, 9789.	4.1	269
18	Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. Journal of the American Chemical Society, 2014, 136, 2503-2510.	13.7	266

#	Article	IF	CITATIONS
19	ZSM-5 Zeolite Single Crystals with <i>b</i> -Axis-Aligned Mesoporous Channels as an Efficient Catalyst for Conversion of Bulky Organic Molecules. Journal of the American Chemical Society, 2012, 134, 4557-4560.	13.7	264
20	Excellent Performance of One-Pot Synthesized Cu-SSZ-13 Catalyst for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . Environmental Science & Technology, 2014, 48, 566-572.	10.0	264
21	Product Selectivity Controlled by Zeolite Crystals in Biomass Hydrogenation over a Palladium Catalyst. Journal of the American Chemical Society, 2016, 138, 7880-7883.	13.7	262
22	A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores. Angewandte Chemie - International Edition, 2017, 56, 9747-9751.	13.8	248
23	Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 2012, 22, 5495.	6.7	245
24	Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2019, 141, 8482-8488.	13.7	242
25	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie - International Edition, 2018, 57, 6104-6108.	13.8	241
26	Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous and Mesoporous Materials, 2001, 46, 23-34.	4.4	235
27	Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. Journal of the American Chemical Society, 2014, 136, 4019-4025.	13.7	233
28	Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today, 2009, 4, 292-301.	11.9	227
29	Design and Synthesis of Mesoporous Polymer-Based Solid Acid Catalysts with Excellent Hydrophobicity and Extraordinary Catalytic Activity. ACS Catalysis, 2012, 2, 565-572.	11.2	216
30	Solventâ€Free Synthesis of Silicoaluminophosphate Zeolites. Angewandte Chemie - International Edition, 2013, 52, 9172-9175.	13.8	212
31	Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites. Journal of the American Chemical Society, 2002, 124, 888-889.	13.7	210
32	Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. Journal of Catalysis, 2016, 338, 202-209.	6.2	210
33	New Strategies for the Preparation of Sinterâ€Resistant Metalâ€Nanoparticleâ€Based Catalysts. Advanced Materials, 2019, 31, e1901905.	21.0	203
34	Hydrophobic Solid Acids and Their Catalytic Applications in Green and Sustainable Chemistry. ACS Catalysis, 2018, 8, 372-391.	11.2	200
35	A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols. Journal of Materials Chemistry A, 2013, 1, 9037.	10.3	196
36	Extraordinarily High Activity in the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Pd Supported on Mesoporous Zeolite Y. Journal of the American Chemical Society, 2011, 133, 15346-15349.	13.7	186

#	Article	IF	CITATIONS
37	Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 2011, 47, 3945.	4.1	178
38	Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. Journal of the American Chemical Society, 2015, 137, 1052-1055.	13.7	178
39	Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 2010, 131, 58-67.	4.4	170
40	Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. Journal of Catalysis, 2010, 271, 52-58.	6.2	166
41	Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chemical Communications, 2015, 51, 5936-5938.	4.1	164
42	Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217, 421-428.	20.2	161
43	Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nature Communications, 2018, 9, 1362.	12.8	161
44	Strong Metal–Support Interactions Achieved by Hydroxide-to-Oxide Support Transformation for Preparation of Sinter-Resistant Gold Nanoparticle Catalysts. ACS Catalysis, 2017, 7, 7461-7465.	11.2	158
45	Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. CheM, 2018, 4, 1726-1739.	11.7	157
46	Solvent-Free Synthesis of Zeolites: Mechanism and Utility. Accounts of Chemical Research, 2018, 51, 1396-1403.	15.6	156
47	Isolated boron in zeolite for oxidative dehydrogenation of propane. Science, 2021, 372, 76-80.	12.6	155
48	Task-Specific Design of Porous Polymer Heterogeneous Catalysts beyond Homogeneous Counterparts. ACS Catalysis, 2015, 5, 4556-4567.	11.2	152
49	Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50, 11844-11847.	4.1	148
50	Synthesis and Characterization of High-Quality Zeolite LTA and FAU Single Nanocrystals. Chemistry of Materials, 1998, 10, 1483-1486.	6.7	147
51	Mesoporous ZSM-5 Zeolite-Supported Ru Nanoparticles as Highly Efficient Catalysts for Upgrading Phenolic Biomolecules. ACS Catalysis, 2015, 5, 2727-2734.	11.2	147
52	Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catalysis, 2018, 8, 474-481.	11.2	146
53	Metal@Zeolite Hybrid Materials for Catalysis. ACS Central Science, 2020, 6, 1685-1697.	11.3	146
54	Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nature Catalysis, 2021, 4, 418-424.	34.4	146

#	Article	lF	CITATIONS
55	High-Temperature Generalized Synthesis of Stable Ordered Mesoporous Silica-Based Materials by Using Fluorocarbon–Hydrocarbon Surfactant Mixtures. Angewandte Chemie - International Edition, 2003, 42, 3633-3637.	13.8	143
56	Selective catalytic reduction of NO <i>x</i> with NH3: opportunities and challenges of Cu-based small-pore zeolites. National Science Review, 2021, 8, nwab010.	9.5	137
57	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nature Communications, 2015, 6, 6957.	12.8	133
58	Distinguishing the Silanol Groups in the Mesoporous Molecular Sieve MCM-41. Angewandte Chemie International Edition in English, 1996, 34, 2694-2696.	4.4	132
59	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, 8670-8675.	13.8	128
60	Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO ₂ . ChemSusChem, 2017, 10, 1160-1165.	6.8	127
61	Imparting amphiphobicity on single-crystalline porous materials. Nature Communications, 2016, 7, 13300.	12.8	126
62	Solvent-Free Preparation of Nanosized Sulfated Zirconia with BrÃ,nsted Acidic Sites from a Simple Calcination. Journal of Physical Chemistry B, 2005, 109, 2567-2572.	2.6	124
63	Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nature Communications, 2020, 11, 1033.	12.8	124
64	Direct Conversion of Syngas to Ethanol within Zeolite Crystals. CheM, 2020, 6, 646-657.	11.7	123
65	Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation. Journal of the American Chemical Society, 2020, 142, 16429-16436.	13.7	120
66	Selective Catalytic Production of 5â€Hydroxymethylfurfural from Glucose by Adjusting Catalyst Wettability. ChemSusChem, 2014, 7, 402-406.	6.8	119
67	Nanoporous catalysts for biomass conversion. Green Chemistry, 2015, 17, 24-39.	9.0	119
68	Zeolite Fixed Metal Nanoparticles: New Perspective in Catalysis. Accounts of Chemical Research, 2021, 54, 2579-2590.	15.6	117
69	Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst. Applied Catalysis B: Environmental, 2013, 140-141, 199-205.	20.2	111
70	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	10.0	110
71	Formation Pathway for LTA Zeolite Crystals Synthesized via a Charge Density Mismatch Approach. Journal of the American Chemical Society, 2013, 135, 2248-2255.	13.7	105
72	Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu–SSZ-13 catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2015, 179, 206-212.	20.2	105

#	Article	IF	CITATIONS
73	The Importance of Catalyst Wettability. ChemCatChem, 2014, 6, 3048-3052.	3.7	104
74	Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chinese Journal of Catalysis, 2016, 37, 800-809.	14.0	101
75	Designed synthesis of TS-1 crystals with controllable b-oriented length. Chemical Communications, 2011, 47, 1048-1050.	4.1	96
76	Transesterification to Biodiesel with Superhydrophobic Porous Solid Base Catalysts. ChemSusChem, 2011, 4, 1059-1062.	6.8	95
77	A Hierarchical Bipyridineâ€Constructed Framework for Highly Efficient Carbon Dioxide Capture and Catalytic Conversion. ChemSusChem, 2017, 10, 1186-1192.	6.8	94
78	Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today, 2018, 20, 74-83.	11.9	94
79	Superhydrophobicity: Constructing Homogeneous Catalysts into Superhydrophobic Porous Frameworks to Protect Them from Hydrolytic Degradation. CheM, 2016, 1, 628-639.	11.7	93
80	Improved <i>para</i> â€Xylene Selectivity in <i>metaâ€</i> Xylene Isomerization Over ZSMâ€5 Crystals with Relatively Long <i>b</i> â€Axis Length. ChemCatChem, 2013, 5, 1517-1523.	3.7	92
81	MnO2/graphene oxide: a highly active catalyst for amide synthesis from alcohols and ammonia in aqueous media. Journal of Materials Chemistry, 2012, 22, 18115.	6.7	89
82	Ordered Mesoporous Materials with Improved Stability and Catalytic Activity. Topics in Catalysis, 2005, 35, 9-24.	2.8	86
83	Design and synthesis of an efficient nanoporous adsorbent for Hg ²⁺ and Pb ²⁺ ions in water. Journal of Materials Chemistry A, 2016, 4, 5999-6005.	10.3	86
84	Cobalt–Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catalysis, 2019, 9, 11335-11340.	11.2	85
85	Aluminium-rich Beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene. Journal of Materials Chemistry A, 2015, 3, 5556-5562.	10.3	83
86	A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores. Angewandte Chemie, 2017, 129, 9879-9883.	2.0	81
87	Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Applied Catalysis B: Environmental, 2013, 136-137, 193-201.	20.2	79
88	Activity and Selectivity in Nitroarene Hydrogenation over Au Nanoparticles on the Edge/Corner of Anatase. ACS Catalysis, 2016, 6, 4110-4116.	11.2	79
89	Organic Template Free Synthesis of Aluminosilicate Zeolite ECR-1. Chemistry of Materials, 2006, 18, 2775-2777.	6.7	78
90	Organic Template-Free Synthesis of ZSM-34 Zeolite from an Assistance of Zeolite L Seeds Solution. Chemistry of Materials, 2008, 20, 357-359.	6.7	77

#	Article	IF	CITATIONS
91	Insights of the Crystallization Process of Molecular Sieve AlPO ₄ -5 Prepared by Solvent-Free Synthesis. Journal of the American Chemical Society, 2016, 138, 6171-6176.	13.7	77
92	Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 2011, 21, 9494.	6.7	76
93	Understanding of the High Hydrothermal Stability of the Mesoporous Materials Prepared by the Assembly of Triblock Copolymer with Preformed Zeolite Precursors in Acidic Media. Journal of Physical Chemistry B, 2003, 107, 7551-7556.	2.6	73
94	A hierarchical porous ionic organic polymer as a new platform for heterogeneous phase transfer catalysis. Journal of Materials Chemistry A, 2015, 3, 23871-23875.	10.3	73
95	Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustainable Chemistry and Engineering, 2017, 5, 3123-3131.	6.7	72
96	Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 2017, 5, 9076-9080.	10.3	71
97	Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nature Communications, 2018, 9, 3236.	12.8	70
98	Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10–20 nm thickness and partially blocked acidic sites. Chemical Communications, 2017, 53, 4942-4945.	4.1	69
99	Zeolite nanosheets for catalysis. Chemical Society Reviews, 2022, 51, 2431-2443.	38.1	69
100	Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous Beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249, 111-115.	6.2	68
101	Atom-economical synthesis of a high silica CHA zeolite using a solvent-free route. Chemical Communications, 2015, 51, 16920-16923.	4.1	68
102	Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7, 233-248.	4.4	67
103	A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chemical Communications, 2014, 50, 2012.	4.1	66
104	Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catalysis Today, 2015, 242, 249-254.	4.4	66
105	Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	14.9	66
106	Complete oxidation of formaldehyde at room temperature over an Al-rich Beta zeolite supported platinum catalyst. Applied Catalysis B: Environmental, 2017, 219, 200-208.	20.2	65
107	Insights into the Topotactic Conversion Process from Layered Silicate RUB-36 to FER-type Zeolite by Layer Reassembly. Chemistry of Materials, 2013, 25, 840-847.	6.7	64
108	Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2019, 9, 241-251.	4.1	64

#	Article	IF	CITATIONS
109	Metal-acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Applied Catalysis B: Environmental, 2019, 254, 560-568.	20.2	64
110	Superhydrophilic mesoporous sulfonated melamine–formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. Journal of Materials Chemistry A, 2013, 1, 8630.	10.3	63
111	Origin of the Low Olefin Production over HZSM-22 and HZSM-23 Zeolites: External Acid Sites and Pore Mouth Catalysis. ACS Catalysis, 2014, 4, 529-534.	11.2	63
112	Dispersion of Inorganic Salts into Zeolites and Their Pore Modification. Journal of Catalysis, 1998, 176, 474-487.	6.2	61
113	Mesoporous cross-linked polymer copolymerized with chiral BINAP ligand coordinated to a ruthenium species as an efficient heterogeneous catalyst for asymmetric hydrogenation. Chemical Communications, 2012, 48, 10505.	4.1	60
114	High-temperature synthesis of stable and ordered mesoporous polymer monoliths with low dielectric constants. Journal of Materials Chemistry, 2009, 19, 7921.	6.7	59
115	Interlayer Expansion of the Hydrous Layer Silicate RUB-36 to a Functionalized, Microporous Framework Silicate: Crystal Structure Analysis and Physical and Chemical Characterization. Chemistry of Materials, 2012, 24, 1536-1545.	6.7	59
116	Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 2013, 308, 73-81.	6.2	59
117	Solventâ€Free Syntheses of Hierarchically Porous Aluminophosphateâ€Based Zeolites with AEL and AFI Structures. Chemistry - A European Journal, 2014, 20, 17616-17623.	3.3	59
118	Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation–Amination of Levulinic Acid to Pyrrolidones. ChemCatChem, 2017, 9, 2661-2667.	3.7	59
119	Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 2018, 8, 10950-10963.	11.2	59
120	Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. Journal of Materials Chemistry A, 2013, 1, 9422.	10.3	58
121	A new catalyst platform: zeolite Beta from template-free synthesis. Catalysis Science and Technology, 2013, 3, 2580.	4.1	58
122	Solvent-free synthesis of titanosilicate zeolites. Journal of Materials Chemistry A, 2015, 3, 14093-14095.	10.3	58
123	Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst. Nature Communications, 2017, 8, 15240.	12.8	57
124	Interlayerâ€Expanded Microporous Titanosilicate Catalysts with Functionalized Hydroxyl Groups. ChemCatChem, 2011, 3, 1442-1446.	3.7	56
125	Solventâ€Free Synthesis of Zeolite Crystals Encapsulating Gold–Palladium Nanoparticles for the Selective Oxidation of Bioethanol. ChemSusChem, 2015, 8, 2867-2871.	6.8	56
126	Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions. Chinese Journal of Catalysis, 2021, 42, 618-626.	14.0	56

#	Article	IF	CITATIONS
127	Design and Synthesis of a Catalytically Active Cu-SSZ-13 Zeolite from a Copper-Amine Complex Template. Chinese Journal of Catalysis, 2012, 33, 92-105.	14.0	54
128	Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1, .	4.5	54
129	Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporous and Mesoporous Materials, 2009, 117, 561-569.	4.4	52
130	Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous and Mesoporous Materials, 2014, 186, 106-112.	4.4	52
131	Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite. Journal of Materials Chemistry A, 2019, 7, 4420-4425.	10.3	52
132	Dispersed Nickel Boosts Catalysis by Copper in CO ₂ Hydrogenation. ACS Catalysis, 2020, 10, 9261-9270.	11.2	52
133	Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 2012, 155, 1-7.	4.4	51
134	Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation. ACS Catalysis, 2020, 10, 6299-6308.	11.2	51
135	Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nature Nanotechnology, 2022, 17, 714-720.	31.5	51
136	Seed-directed and organotemplate-free synthesis of TON zeolite. Catalysis Today, 2014, 226, 103-108.	4.4	50
137	Hydrophobic Zeolite Containing Titania Particles as Wettability-Selective Catalyst for Formaldehyde Removal. ACS Catalysis, 2018, 8, 5250-5254.	11.2	50
138	Superior Performance in Catalytic Combustion of Toluene over KZSM-5 Zeolite Supported Platinum Catalyst. Catalysis Letters, 2014, 144, 1851-1859.	2.6	49
139	Solvent-free and Mesoporogen-free Synthesis of Mesoporous Aluminosilicate ZSM-5 Zeolites with Superior Catalytic Properties in the Methanol-to-Olefins Reaction. Industrial & Engineering Chemistry Research, 2017, 56, 1450-1460.	3.7	49
140	Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine. Journal of Colloid and Interface Science, 2014, 418, 193-199.	9.4	48
141	Creation of BrÃ,nsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of Materials Chemistry A, 2014, 2, 3725.	10.3	48
142	Strategies for the design of porous polymers as efficient heterogeneous catalysts: from co-polymerization to self-polymerization. Catalysis Science and Technology, 2017, 7, 1028-1039.	4.1	48
143	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie - International Edition, 2019, 58, 12138-12142.	13.8	47
144	Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: transfer or reassembly?. Inorganic Chemistry Frontiers, 2020, 7, 2204-2211.	6.0	47

#	Article	IF	CITATIONS
145	Interzeolite transformation from FAU to CHA and MFI zeolites monitored by UV Raman spectroscopy. Chinese Journal of Catalysis, 2019, 40, 1854-1859.	14.0	46
146	Porous Polymerized Organocatalysts Rationally Synthesized from the Corresponding Vinyl-Functionalized Monomers as Efficient Heterogeneous Catalysts. ACS Catalysis, 2015, 5, 1556-1559.	11.2	45
147	Organotemplate-Free Syntheses of ZSM-34 Zeolite and Its Heteroatom-Substituted Analogues with Good Catalytic Performance. Chemistry of Materials, 2010, 22, 3099-3107.	6.7	44
148	Insights into the Organotemplate-Free Synthesis of Zeolite Catalysts. Engineering, 2017, 3, 567-574.	6.7	44
149	Hydrogenation of Biofuels with Formic Acid over a Palladiumâ€Based Ternary Catalyst with Two Types of Active Sites. ChemSusChem, 2014, 7, 1537-1541.	6.8	43
150	Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction. Applied Catalysis B: Environmental, 2020, 277, 119193.	20.2	43
151	Simple Preparation of Honeycomb-like Macrostructured and Microporous Carbons with High Performance in Oxidative Dehydrogenation of Ethylbenzene. Chemistry of Materials, 2007, 19, 2894-2897.	6.7	42
152	Enhancement of low-temperature activity over Cu-exchanged zeolite beta from organotemplate-free synthesis for the selective catalytic reduction of NOx with NH3 in exhaust gas streams. Microporous and Mesoporous Materials, 2014, 200, 304-310.	4.4	41
153	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, 8762-8767.	2.0	40
154	High-temperature synthesis of ordered mesoporous silicas from solo hydrocarbonsurfactants and understanding of their synthetic mechanisms. Journal of Materials Chemistry, 2009, 19, 661-665.	6.7	39
155	"Solvent-free―synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). Journal of Materials Chemistry, 2011, 21, 12026.	6.7	39
156	Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. Journal of Materials Chemistry, 2012, 22, 12238.	6.7	39
157	Superhydrophobic, chiral, and mesoporous TsDPEN copolymer coordinated to ruthenium species as an efficient catalyst for asymmetric transfer hydrogenation. Nano Today, 2013, 8, 342-350.	11.9	39
158	Improvement of catalytic activity over Cu–Fe modified Al-rich Beta catalyst for the selective catalytic reduction of NO with NH3. Microporous and Mesoporous Materials, 2016, 236, 211-217.	4.4	39
159	Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Applied Catalysis B: Environmental, 2021, 281, 119480.	20.2	39
160	High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chemical Communications, 2013, 49, 10495.	4.1	38
161	Tuning product selectivity in CO ₂ hydrogenation over metal-based catalysts. Chemical Science, 2021, 12, 14660-14673.	7.4	38
162	Microporosity in Ordered Mesoporous Aluminosilicates Characterized by Catalytic Probing Reactions. Journal of Physical Chemistry B, 2003, 107, 1853-1857.	2.6	36

#	Article	IF	CITATIONS
163	Catalytic performance for toluene abatement over Al-rich Beta zeolite supported manganese oxides. Catalysis Today, 2017, 297, 182-187.	4.4	36
164	Fish-in-hole: rationally positioning palladium into traps of zeolite crystals for sinter-resistant catalysts. Chemical Communications, 2018, 54, 3274-3277.	4.1	36
165	Solvent-Free Synthesis of Core–Shell Zn/ZSM-5@Silicalite-1 Catalyst for Selective Conversion of Methanol to BTX Aromatics. Industrial & Engineering Chemistry Research, 2019, 58, 15453-15458.	3.7	36
166	High-temperature synthesis of magnetically active and SO3H-functionalized ordered mesoporous carbon with good catalytic performance. Catalysis Today, 2012, 186, 115-120.	4.4	35
167	One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route. Journal of Materials Chemistry A, 2013, 1, 3254.	10.3	35
168	Development of a post-synthetic method for tuning the Al content of OSDA-free Beta as a catalyst for conversion of methanol to olefins. Catalysis Science and Technology, 2016, 6, 713-721.	4.1	35
169	Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines. Reaction Chemistry and Engineering, 2019, 4, 975-985.	3.7	35
170	Strong Oxide–Support Interactions Accelerate Selective Dehydrogenation of Propane by Modulating the Surface Oxygen. ACS Catalysis, 2020, 10, 10559-10569.	11.2	35
171	Mesostructured Sulfated Zirconia with High Catalytic Activity in n-Butane Isomerization. Catalysis Letters, 2003, 87, 57-61.	2.6	34
172	Selective Hydrogenation of CO ₂ to Ethanol over Cobalt Catalysts. Angewandte Chemie, 2018, 130, 6212-6216.	2.0	34
173	Direct Synthesis of Aluminosilicate SSZ-39 Zeolite Using Colloidal Silica as a Starting Source. ACS Applied Materials & Interfaces, 2019, 11, 23112-23117.	8.0	34
174	Mesoporous Silica Materials with an Extremely High Content of Organic Sulfonic Groups and Their Comparable Activities with that of Concentrated Sulfuric Acid in Catalytic Esterification. Journal of Physical Chemistry B, 2006, 110, 14142-14147.	2.6	33
175	Ordered mesoporous sulfated silica-zirconia materials with high zirconium contents in the structure. Journal of Porous Materials, 2006, 13, 163-171.	2.6	32
176	Solvothermal synthesis of carboxyl and amido functionalized mesoporous resins for water treatments. Journal of Materials Chemistry, 2010, 20, 4609-4614.	6.7	32
177	Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase. Journal of Physical Chemistry Letters, 2015, 6, 2345-2349.	4.6	32
178	A Facile, Direct Synthesis of Styrene Carbonate from Styrene and CO2 Catalyzed by Au/Fe(OH)3–ZnBr2/Bu4NBr System. Catalysis Letters, 2009, 129, 437-443.	2.6	31
179	Solvent-free synthesis of zeolite catalysts. Science China Chemistry, 2015, 58, 6-13.	8.2	31
180	Homochiral Porous Framework as a Platform for Durability Enhancement of Molecular Catalysts. Chemistry of Materials, 2017, 29, 5720-5726.	6.7	31

#	Article	IF	CITATIONS
181	Generalized high-temperature synthesis of zeolite catalysts with unpredictably high space-time yields (STYs). Journal of Materials Chemistry A, 2017, 5, 2613-2618.	10.3	31
182	An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. Journal of Materials Chemistry A, 2018, 6, 21156-21161.	10.3	31
183	Recyclable Porous Polymerâ€Supported Copper Catalysts for Glaser and Huisgen 1,3â€Diolar Cycloaddition Reactions. Chemistry - an Asian Journal, 2013, 8, 2822-2827.	3.3	30
184	Eco-friendly photocatalysts achieved by zeolite fixing. Applied Catalysis B: Environmental, 2017, 212, 193-200.	20.2	30
185	Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. Journal of the American Chemical Society, 2019, 141, 18318-18324.	13.7	30
186	Exceptional activity for formaldehyde combustion using siliceous Beta zeolite as a catalyst support. Catalysis Today, 2020, 339, 174-180.	4.4	30
187	Fischer-Tropsch reaction within zeolite crystals for selective formation of gasoline-ranged hydrocarbons. Journal of Energy Chemistry, 2021, 54, 429-433.	12.9	30
188	Advances in emission control of diesel vehicles in China. Journal of Environmental Sciences, 2023, 123, 15-29.	6.1	30
189	Copperâ€Incorporated Porous Polydivinylbenzene as Efficient and Recyclable Heterogeneous Catalyst in Ullmann Biaryl Ether Coupling. ChemCatChem, 2013, 5, 1606-1613.	3.7	29
190	Fe-doped Beta zeolite from organotemplate-free synthesis for NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2016, 6, 6581-6592.	4.1	29
191	Mn-promoted Ag supported on pure siliceous Beta zeolite (Ag/Beta-Si) for catalytic combustion of formaldehyde. Applied Catalysis B: Environmental, 2020, 268, 118461.	20.2	29
192	Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chemical Communications, 2020, 56, 10631-10641.	4.1	29
193	Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. Journal of Materials Chemistry, 2012, 22, 6564.	6.7	28
194	Direct Synthesis of Pure Aqueous H ₂ O ₂ Solution within Aluminosilicate Zeolite Crystals. ACS Catalysis, 2021, 11, 1946-1951.	11.2	28
195	Aluminum Fluoride Modified HZSM-5 Zeolite with Superior Performance in Synthesis of Dimethyl Ether from Methanol. Energy & Fuels, 2012, 26, 4475-4480.	5.1	27
196	A new class of solid Lewis acid catalysts based on interlayer expansion of layered silicates of the RUB-36 type with heteroatoms. Journal of Materials Chemistry A, 2014, 2, 9709-9717.	10.3	27
197	Ultrathin nanosheets of aluminosilicate FER zeolites synthesized in the presence of a sole small organic ammonium. Journal of Materials Chemistry A, 2019, 7, 16671-16676.	10.3	27
198	An efficient synthesis of NaA zeolite membranes from direct crystallization of gel-dipped macroporous alumina tubes with seeds. Journal of Materials Chemistry A, 2018, 6, 10484-10489.	10.3	26

#	Article	IF	CITATIONS
199	Selective conversion of syngas to propane over ZnCrO -SSZ-39 OX-ZEO catalysts. Journal of Energy Chemistry, 2019, 36, 141-147.	12.9	26
200	Catalytic epoxidation of styrene over copper hydroxyphosphate Cu2(OH)PO4. Catalysis Letters, 2001, 71, 241-244.	2.6	25
201	Mesoporous Solid Acid Catalysts. Catalysis Surveys From Asia, 2011, 15, 37-48.	2.6	25
202	Title is missing!. Catalysis Letters, 2001, 76, 105-109.	2.6	24
203	High Activity in Catalytic Oxidation of Benzyl Alcohol with Molecular Oxygen over Carboxylic-Functionalized Carbon Nanofiber-Supported Ruthenium Catalysts. Catalysis Letters, 2009, 127, 400-405.	2.6	24
204	New zeolite Al-COE-4: reaching highly shape-selective catalytic performance through interlayer expansion. Chemical Communications, 2012, 48, 11549.	4.1	24
205	Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233, 133-139.	4.4	24
206	Zeolite Seeds: Third Type of Structure Directing Agents in the Synthesis of Zeolites. Comments on Inorganic Chemistry, 2016, 36, 1-16.	5.2	24
207	Enhancement of hydroformylation performance via increasing the phosphine ligand concentration in porous organic polymer catalysts. Catalysis Today, 2017, 298, 40-45.	4.4	24
208	Host–Guest Interactions and Their Catalytic Consequences in Methanol to Olefins Conversion on Zeolites Studied by ¹³ C– ²⁷ Al Double-Resonance Solid-State NMR Spectroscopy. ACS Catalysis, 2017, 7, 6094-6103.	11.2	24
209	A porous BrÃ,nsted superacid as an efficient and durable solid catalyst. Journal of Materials Chemistry A, 2018, 6, 18712-18719.	10.3	24
210	Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO ₂ transformation. Chemical Communications, 2019, 55, 9180-9183.	4.1	24
211	<i>110th Anniversary:</i> Sustainable Synthesis of Zeolites: From Fundamental Research to Industrial Production. Industrial & amp; Engineering Chemistry Research, 2019, 58, 11653-11658.	3.7	24
212	Design of a Small Organic Template for the Synthesis of Self-Pillared Pentasil Zeolite Nanosheets. Journal of the American Chemical Society, 2022, 144, 6270-6277.	13.7	24
213	Porous polymer supported palladium catalyst for cross coupling reactions with high activity and recyclability. Science China Chemistry, 2012, 55, 2095-2103.	8.2	23
214	Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents. Chinese Journal of Catalysis, 2021, 42, 563-570.	14.0	23
215	Hydrothermally Stable and Catalytically Active Ordered Mesoporous Materials Assembled from Preformed Zeolite Nanoclusters. Catalysis Surveys From Asia, 2004, 8, 151-159.	2.6	22
216	Efficient synthesis of aluminosilicate RTH zeolite with good catalytic performances in NH ₃ -SCR and MTO reactions. Journal of Materials Chemistry A, 2018, 6, 8705-8711.	10.3	22

#	Article	IF	CITATIONS
217	Mesoporous zeolites for biofuel upgrading and glycerol conversion. Frontiers of Chemical Science and Engineering, 2018, 12, 132-144.	4.4	22
218	A significant enhancement of catalytic performance by adjusting catalyst wettability. Science China Materials, 2018, 61, 1137-1142.	6.3	22
219	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie - International Edition, 2020, 59, 15649-15655.	13.8	22
220	Cu-Exchanged CHA-Type Zeolite from Organic Template-Free Synthesis: An Effective Catalyst for NH ₃ -SCR. Industrial & Engineering Chemistry Research, 2020, 59, 7375-7382.	3.7	22
221	Zur Unterscheidung der Silanolgruppen im mesoporösen Molekularsieb MCMâ€41. Angewandte Chemie, 1995, 107, 2898-2900.	2.0	21
222	Solvent-free synthesis of SAPO-5 zeolite with plate-like morphology in the presence of surfactants. Chinese Journal of Catalysis, 2015, 36, 797-800.	14.0	21
223	Mapping Al Distributions in SSZ-13 Zeolites from ²³ Na Solid-State NMR Spectroscopy and DFT Calculations. Journal of Physical Chemistry C, 2018, 122, 9973-9979.	3.1	21
224	Generalized ionothermal synthesis of silica-based zeolites. Microporous and Mesoporous Materials, 2019, 286, 163-168.	4.4	21
225	Probing the limits of structure insensitivity: size-dependent catalytic activity of Al2O3-supported iridium clusters and particles for toluene hydrogenation. Studies in Surface Science and Catalysis, 1996, 101, 1135-1144.	1.5	20
226	Enhancement of Catalytic Activity in Epoxide Hydration by Increasing the Concentration of Cobalt(III)/Salen in Porous Polymer Catalysts. ChemCatChem, 2016, 8, 812-817.	3.7	20
227	Mesostructured Sulfated Tin Oxide and its High Catalytic Activity in Esterification and Friedel–Crafts Acylation. Catalysis Letters, 2006, 108, 155-158.	2.6	19
228	Synthesis of Sulfated Silica-Doped Tin Oxides and Their High Activities in Transesterification. Catalysis Letters, 2008, 124, 133-138.	2.6	19
229	Selective hydrogenolysis of carbon–oxygen bonds with formic acid over a Au–Pt alloy catalyst. Chemical Communications, 2017, 53, 2681-2684.	4.1	19
230	Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair. Nature Communications, 2019, 10, 3059.	12.8	19
231	NbOPO ₄ Supported Rh Nanoparticles with Strong Metalâ^'Support Interactions for Selective CO ₂ Hydrogenation. ChemSusChem, 2020, 13, 6300-6306.	6.8	19
232	Targeted synthesis of zeolites from calculated interaction between zeolite structure and organic template. National Science Review, 2022, 9, .	9.5	19
233	Cesium-free synthesis of aluminosilicate RHO zeolite in the presence of cationic polymer. Microporous and Mesoporous Materials, 2010, 132, 352-356.	4.4	18
234	Ascorbic acid assisted green route for synthesis of water dispersible carbon dots. Chemical Research in Chinese Universities, 2013, 29, 401-403.	2.6	18

#	Article	IF	CITATIONS
235	Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support. Catalysis Today, 2020, 350, 165-170.	4.4	18
236	Complete oxidation of formaldehyde at room temperature over Ag-loaded octahedral molecular sieve synthesized from solvent-free route. Applied Catalysis B: Environmental, 2022, 303, 120875.	20.2	18
237	Recent strategies for synthesis of metallosilicate zeolites. Catalysis Today, 2022, 390-391, 2-11.	4.4	18
238	Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catalysis Today, 2023, 410, 56-67.	4.4	18
239	Mgâ€Al Mixed Oxides Supported Bimetallic Auâ€Pd Nanoparticles with Superior Catalytic Properties in Aerobic Oxidation of Benzyl Alcohol and Glycerol. Chinese Journal of Chemistry, 2012, 30, 2189-2197.	4.9	17
240	Enhanced synthetic efficiency of CHA zeolite crystallized at higher temperatures. Catalysis Today, 2018, 316, 31-36.	4.4	17
241	Synthesis of EMT-rich faujasite in the presence of organic template of low-cost polyquaternium-6. Journal of Porous Materials, 2008, 15, 295-301.	2.6	16
242	From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 2015, 27, 316-326.	6.7	16
243	Enhanced catalytic performance of methane combustion over zeolite-supported Pd catalysts with the lanthanum. Catalysis Today, 2021, 364, 16-20.	4.4	16
244	Cu/ZnO/Al ₂ O ₃ Catalyst Modulated by Zirconia with Enhanced Performance in CO ₂ Hydrogenation to Methanol. Industrial & Engineering Chemistry Research, 2022, 61, 10446-10454.	3.7	16
245	Highly steam-stable mesoporous silica assembled from preformed zeolite precursors at high temperatures. Journal of Materials Chemistry, 2005, 15, 5063.	6.7	15
246	Solventâ€Free Synthesis of <scp>ITQ</scp> â€12, <scp>ITQ</scp> â€13, and <scp>ITQ</scp> â€17 Zeolites. Chine Journal of Chemistry, 2017, 35, 572-576.	25e 4.9	15
247	<i>N-</i> Oxyl Radicals Trapped on Zeolite Surface Accelerate Photocatalysis. ACS Catalysis, 2019, 9, 10448-10453.	11.2	15
248	Titanosilicate zeolite supported Pt nanoparticles with electronic metal-support interactions for efficient methanol steam reforming. Catalysis Today, 2021, 382, 42-47.	4.4	15
249	Hierarchical macroporous epoxy resin templated from single semi-fluorinated surfactant. Journal of Porous Materials, 2010, 17, 693-698.	2.6	14
250	Mesoporous EU-1 zeolite synthesized in the presence of cationic polymer. Microporous and Mesoporous Materials, 2016, 235, 246-252.	4.4	14
251	Aerobic Activation of Câ€H Bond in Amines Over a Nanorod Manganese Oxide Catalyst. ChemCatChem, 2019, 11, 401-406.	3.7	14
252	Nanorod Manganese Oxide as an Efficient Heterogeneous Catalyst for Hydration of Nitriles into Amides. Industrial & Engineering Chemistry Research, 2019, 58, 17319-17324.	3.7	14

#	Article	IF	CITATIONS
253	Low-Temperature Dehydration of Ethanol to Ethylene over Cu–Zeolite Catalysts Synthesized from Cu–Tetraethylenepentamine. Industrial & Engineering Chemistry Research, 2020, 59, 17300-17306.	3.7	14
254	Advances in the synthesis and application of the SSZ-39 zeolite. Inorganic Chemistry Frontiers, 2022, 9, 1047-1057.	6.0	14
255	Co-salen functionalized on graphene as an efficient heterogeneous catalyst for cyclohexene oxidation. Journal of Energy Chemistry, 2013, 22, 48-51.	12.9	13
256	Improved catalytic activity in methanol electro-oxidation over the nickel form of aluminum-rich beta-SDS zeolite modified electrode. Journal of Materials Chemistry A, 2015, 3, 5811-5814.	10.3	13
257	Sustainable and efficient synthesis of nanosized EMT zeolites under solvent-free and organotemplate-free conditions. Microporous and Mesoporous Materials, 2019, 286, 105-109.	4.4	13
258	High-temperature hydrothermal synthesis of magnetically active, ordered mesoporous resin and carbon monoliths with reusable adsorption for organic dye. Adsorption, 2013, 19, 39-47.	3.0	12
259	Understanding Mechanism and Designing Strategies for Sustainable Synthesis of Zeolites: A Personal Story. Chemical Record, 2016, 16, 1054-1066.	5.8	12
260	Interfacial CoO _{<i>x</i>} Layers on TiO ₂ as an Efficient Catalyst for Solventâ€Free Aerobic Oxidation of Hydrocarbons. ChemSusChem, 2018, 11, 3965-3974.	6.8	12
261	Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading. Chinese Journal of Catalysis, 2020, 41, 1118-1124.	14.0	12
262	Turning on Catalysis: Construction of Triphenylphosphine Moieties into Porous Frameworks. ChemCatChem, 2020, 12, 3285-3289.	3.7	12
263	Design of Cobalt–Amine Complex as an Efficient Structure-Directing Agent for One-Pot Synthesis of Co-SSZ-13 Zeolite. Journal of Physical Chemistry C, 2021, 125, 16343-16349.	3.1	12
264	Zeolites for control of NO emissions: Opportunities and challenges. Chem Catalysis, 2022, 2, 253-261.	6.1	12
265	Framework Stability and BrĄ̃nsted Acidity of Isomorphously Substituted Interlayerâ€Expanded Zeolite COEâ€4: A Density Functional Theory Study. ChemPhysChem, 2014, 15, 1700-1707.	2.1	11
266	Porous Organic Polymers Constructed from Tröger's Base as Efficient Carbon Dioxide Adsorbents and Heterogeneous Catalysts. ChemCatChem, 2018, 10, 1900-1904.	3.7	11
267	Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework. Molecular Catalysis, 2019, 474, 110408.	2.0	11
268	Enhanced catalytic activity in propene oxidation over NaZSM-5 zeolite-supported Pt nanoparticles by increasing the zeolite Si/Al ratio. Catalysis Today, 2020, 355, 476-481.	4.4	11
269	Illuminating solvent-free synthesis of zeolites. Dalton Transactions, 2020, 49, 6939-6944.	3.3	11
270	Product selectivity controlled by manganese oxide crystals in catalytic ammoxidation. Chinese Journal of Catalysis, 2021, 42, 2164-2172.	14.0	11

#	Article	IF	CITATIONS
271	Selective Oxidation of Methane into Methanol Under Mild Conditions. Chemical Research in Chinese Universities, 2022, 38, 671-676.	2.6	11
272	New insights into the di- <i>n</i> -propylamine (DPA) molecule as an organic structural directing agent (OSDA) in the crystallization of AlPO ₄ -11 molecular sieve. Inorganic Chemistry Frontiers, 2018, 5, 1633-1639.	6.0	10
273	Zeolite Catalysts for Green Production of Caprolactam. Industrial & Engineering Chemistry Research, 2023, 62, 2217-2224.	3.7	10
274	Design Synthesis of ITE Zeolite Using Nickel–Amine Complex as an Efficient Structure-Directing Agent. ACS Applied Materials & Interfaces, 2018, 10, 33214-33220.	8.0	9
275	Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction. Frontiers of Chemical Science and Engineering, 2020, 14, 267-274.	4.4	9
276	Basic carrier promoted Pt-catalyzed hydrogenolysis of alkaline lignin. Catalysis Today, 2021, 365, 193-198.	4.4	9
277	Porous Organic Phenanthrolineâ€Based Polymer as an Efficient Transitionâ€Metalâ€Free Heterogeneous Catalyst for Direct Aromatic Câ°'H Activation. Chemistry - A European Journal, 2021, 27, 8684-8688.	3.3	9
278	Metalated Porous Phenanthrolineâ€Based Polymers as Efficient Heterogeneous Catalysts for Regioselective Câ^'H Activation of Heteroarenes. Chemistry - an Asian Journal, 2021, 16, 2469-2474.	3.3	9
279	Partial oxidation of propylene with H2 and O2 over Au supported on ZrO2 with different structural and surface properties. Journal of Catalysis, 2021, 401, 188-199.	6.2	9
280	Selective conversion of acetone to mesitylene over tantalum phosphate catalysts. Chemical Communications, 2022, 58, 2862-2865.	4.1	9
281	Catalytic performance in hydrodesulfurization of thiophene and ir investigation of Co and no adsorption over Coâ^'Mo/Al2O3 and Ruâ^'Coâ^'Mo/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 1992, 46, 351-357.	0.6	8
282	Supported cluster catalysts synthesized to be small, simple, selective, and stable. Faraday Discussions, 2018, 208, 9-33.	3.2	8
283	Design of fast crystallization of nanosized zeolite omega crystals at higher temperatures. Chinese Journal of Catalysis, 2019, 40, 1093-1099.	14.0	8
284	Mesoporous Coâ€Al oxide nanosheets as highly efficient catalysts for CO oxidation. AICHE Journal, 2020, 66, e16923.	3.6	8
285	Role of water as a coporogen in the synthesis of mesoporous poly(divinylbenzenes). Journal of Applied Polymer Science, 2014, 131, .	2.6	7
286	Sustainable one-pot preparation of fully crystalline shaped zeolite catalysts. Catalysis Science and Technology, 2021, 11, 5650-5655.	4.1	7
287	Sustainable synthesis of ordered mesoporous materials without additional solvents. Journal of Colloid and Interface Science, 2022, 619, 116-122.	9.4	7
288	Organotemplateâ€Free Synthesis of a High‣ilica Zeolite with a TON Structure in the Absence of Zeolite Seeds. European Journal of Inorganic Chemistry, 2016, 2016, 1364-1368.	2.0	6

#	Article	IF	CITATIONS
289	Acidic property of BEA zeolite synthesized by seed-directed method. Journal of Porous Materials, 2016, 23, 415-421.	2.6	6
290	Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite. Chemical Research in Chinese Universities, 2022, 38, 136-140.	2.6	6
291	Rareâ€earth Yttrium Exchanged Cuâ€6SZâ€39 Zeolite with Superior Hydrothermal Stability and SO ₂ â€Tolerance in NH ₃ â€SCR of NO <i>x</i> . ChemCatChem, 2022, 14, .	3.7	6
292	Why Wasn't My Manuscript Sent Out for Review?. Industrial & Engineering Chemistry Research, 2017, 56, 7109-7111.	3.7	5
293	Synthesis of Aluminophosphate Molecular Sieves in Alkaline Media. Chemistry - A European Journal, 2020, 26, 11408-11411.	3.3	5
294	Alloyed PdCu Nanoparticles within Siliceous Zeolite Crystals for Catalytic Semihydrogenation. ACS Materials Au, 2022, 2, 313-320.	6.0	5
295	Porous Polymeric Catalysts Constructed from Vinylated Functionalities. Accounts of Materials Research, 2022, 3, 772-781.	11.7	5
296	One-pot synthesis of fluorescent mesoporous materials for detection of the presence of Be2+ ion. Journal of Porous Materials, 2008, 15, 527-533.	2.6	4
297	Rational Design of Zirconiumâ€doped Titania Photocatalysts with Synergistic BrÃ,nsted Acidity and Photoactivity. ChemSusChem, 2016, 9, 2759-2764.	6.8	4
298	Efficient adjustment of product selectivity using controllable Pd nanoparticles in nitroarene hydrogenation. Particuology, 2020, 48, 13-18.	3.6	4
299	Recent advances in organotemplate-free synthesis of zeolites. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100363.	5.9	4
300	One-pot fabrication of metal-zeolite catalysts from a combination of solvent-free and sodium-free routes. Catalysis Today, 2021, 371, 64-68.	4.4	4
301	Structure-performance interplay of rhodium-based catalysts for syngas conversion to ethanol. Materials Chemistry Frontiers, 2022, 6, 663-679.	5.9	4
302	The High Dispersion of CuCl2 in ZSM-5 by Using Microwave Method. Materials Research Society Symposia Proceedings, 1994, 344, 139.	0.1	3
303	Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer. Chinese Journal of Catalysis, 2013, 34, 2004-2008.	14.0	3
304	In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices. Journal of Colloid and Interface Science, 2014, 431, 17-23.	9.4	3
305	Innentitelbild: A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores (Angew. Chem. 33/2017). Angewandte Chemie, 2017, 129, 9756-9756.	2.0	3
306	Enhancement of Catalytic Properties by Adjusting Molecular Diffusion in Nanoporous Catalysts. Advances in Catalysis, 2018, , 1-47.	0.2	3

#	Article	IF	CITATIONS
307	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie, 2019, 131, 12266-12270.	2.0	3
308	Decorated zeolites for chemoselective alkyne/olefin separations. Science China Chemistry, 2020, 63, 1177-1178.	8.2	3
309	Calcination-Free Fabrication of Highly b-Oriented Silicalite-1 Zeolite Films by Secondary Growth in the Absence of Organic Structure-Directing Agents. Industrial & Engineering Chemistry Research, 2021, 60, 7167-7173.	3.7	3
310	Seed-Directed and Organotemplate-free Synthesis of Zeolites. Acta Chimica Sinica, 2012, 70, 2387.	1.4	3
311	Ultrafast crystallization of mesoporous Sn-MFI single crystals achieved by addition of the cationic polyelectrolyte in starting gels. Microporous and Mesoporous Materials, 2022, 337, 111922.	4.4	3
312	Direct synthesis of aluminosilicate ITH zeolite in the presence of a small organic template. Catalysis Today, 2022, 405-406, 251-257.	4.4	3
313	Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates. Chinese Journal of Chemistry, 2002, 20, 711-714.	4.9	2
314	Theoretical Prediction from Classical Equations and Rational Synthesis of Ultrafine LTL Zeolite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 13819-13824.	3.1	2
315	Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant. Catalysis Surveys From Asia, 2022, 26, 211-220.	2.6	2
316	Ship-in-a-bottle formation of Ru3(CO)12 in zeolite NaY. Reaction Kinetics and Catalysis Letters, 1997, 61, 383-389.	0.6	1
317	Advances in porous materials for petrochemical processing: Chinese perspectives. Journal of Porous Materials, 2008, 15, 115-117.	2.6	1
318	Characterization of various surface Coâ€sites on reduced Co–Mo/A1 ₂ O ₃ and Ru–Co–Mo/A1 ₂ O ₃ catalysts using IR and MS spectroscopies. Chinese Journal of Chemistry, 1992, 10, 390-395.	4.9	1
319	Frontispiz: Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, .	2.0	1
320	A Cationic Oligomer as an Organic Template for Direct Synthesis of Aluminosilicate ITH Zeolite. Angewandte Chemie, 2020, 132, 15779-15785.	2.0	1
321	Mesostructured materials. , 2021, , .		1
322	CHARACTERIZATION OF MICROPOROSITY IN STABLE ORDERED MESOPOROUS ALUMINOSILICATES ASSEMBLED FROM PREFORMED NANOSIZED ZEOLITE PRECURSORS. , 2003, , .		0
323	Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates. Science Bulletin, 2004, 49, 2449-2451.	1.7	0
324	Introduction of the Asia-Pacific Association of Catalysis Societies (APACS). Catalysis Surveys From Asia, 2008, 12, 72-77.	2.6	0

#	Article	IF	CITATIONS
325	NEW ROUTES FOR IMPROVING HYDROTHERMAL STABILITY OF ORDERED MESOPOROUS MATERIALS AND SYNTHESIS OF MESOPOROUS ZEOLITES. , 2008, , .		0
326	<i>In situ</i> infrared investigation of alkylation reaction of dianionic triruthenium ketenylidene cluster on magnesium oxide with methyl iodide. Chinese Journal of Chemistry, 1993, 11, 517-523.	4.9	0
327	Shipâ€inâ€bottle formation of Ru ₃ (CO) ₁₂ in NaY zeolite. Chinese Journal of Chemistry, 1994, 12, 258-264.	4.9	0
328	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). Advanced Functional Materials, 2016, 26, 1854-1854.	14.9	0
329	Surprising separation selectivity of ethylene from ethane over pure siliceous zeolites with framework flexibility. Science China Materials, 2018, 61, 763-764.	6.3	0
330	Frontispiece: Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
331	A water-compatible, highly active and reusable PEG-coated mesoporous silica-supported palladium complex and its application in Suzuki coupling reactions. Chemical Communications, 2006, , .	4.1	0
332	Recent Development of Bio-inspired Porous Materials for Catalytic Applications. Chemical Research in Chinese Universities, 0, , .	2.6	0