Vadim I Agol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2271682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polio eradication at the crossroads. The Lancet Global Health, 2021, 9, e1172-e1175.	6.3	23
2	The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution?. Microbiology and Molecular Biology Reviews, 2021, 85, e0005321.	6.6	47
3	Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Biochemistry (Moscow), 2021, 86, 1060-1094.	1.5	22
4	In pursuit of intriguing puzzles. Virology, 2020, 539, 49-60.	2.4	1
5	Characterization of Mutational Tolerance of a Viral RNA–Protein Interaction. Viruses, 2019, 11, 479.	3.3	1
6	Emergency Services of Viral RNAs: Repair and Remodeling. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	26
7	Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications. Viruses, 2017, 9, 353.	3.3	20
8	A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus. Journal of Virology, 2016, 90, 5978-5988.	3.4	20
9	Eradicating polio: A balancing act. Science, 2016, 351, 348-348.	12.6	5
10	Mutational robustness and resilience of a replicative cis-element of RNA virus: Promiscuity, limitations, relevance. RNA Biology, 2015, 12, 1338-1354.	3.1	10
11	Picornaviruses as a Model for Studying the Nature of RNA Recombination. , 2014, , 239-252.		1
12	Suppression of Injuries Caused by a Lytic RNA Virus (Mengovirus) and Their Uncoupling from Viral Reproduction by Mutual Cell/Virus Disarmament. Journal of Virology, 2012, 86, 5574-5583.	3.4	5
13	Cytopathic effects: virus-modulated manifestations of innate immunity?. Trends in Microbiology, 2012, 20, 570-576.	7.7	30
14	Viral security proteins: counteracting host defences. Nature Reviews Microbiology, 2010, 8, 867-878.	28.6	61
15	Theiler's Murine Encephalomyelitis Virus L* Amino Acid Position 93 Is Important for Virus Persistence and Virus-Induced Demyelination. Journal of Virology, 2010, 84, 1348-1354.	3.4	9
16	Mengovirus-Induced Rearrangement of the Nuclear Pore Complex: Hijacking Cellular Phosphorylation Machinery. Journal of Virology, 2009, 83, 3150-3161.	3.4	65
17	Evolution of the Sabin Vaccine into Pathogenic Derivatives without Appreciable Changes in Antigenic Properties: Need for Improvement of Current Poliovirus Surveillance. Journal of Virology, 2009, 83, 3402-3406.	3.4	21
18	Antiapoptotic Activity of the Cardiovirus Leader Protein, a Viral "Security―Protein. Journal of Virology, 2009, 83, 7273-7284.	3.4	44

VADIM I AGOL

#	Article	IF	CITATIONS
19	Interactions between Viral and Prokaryotic Pathogens in a Mixed Infection with Cardiovirus and Mycoplasma. Journal of Virology, 2009, 83, 9940-9951.	3.4	7
20	Immunisation against poliomyelitis: moving forward. Lancet, The, 2008, 371, 1385-1387.	13.7	40
21	Vaccination against polio should not be stopped. Nature Reviews Microbiology, 2007, 5, 952-958.	28.6	75
22	Significance of the C-terminal amino acid residue in mengovirus RNA-dependent RNA polymerase. Virology, 2007, 365, 79-91.	2.4	9
23	Vaccine-derived polioviruses. Biologicals, 2006, 34, 103-108.	1.4	60
24	Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Research, 2006, 34, 2953-2965.	14.5	50
25	Antigenic Evolution of Vaccine-Derived Polioviruses: Changes in Individual Epitopes and Relative Stability of the Overall Immunological Properties. Journal of Virology, 2006, 80, 2641-2653.	3.4	52
26	Nucleocytoplasmic Traffic Disorder Induced by Cardioviruses. Journal of Virology, 2006, 80, 2705-2717.	3.4	93
27	A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: Extending the YNMG family with GYYA. Rna, 2006, 12, 1671-1682.	3.5	16
28	Don't drop current vaccine until we have new ones. Nature, 2005, 435, 881-881.	27.8	13
29	Variability in apoptotic response to poliovirus infection. Virology, 2005, 331, 292-306.	2.4	31
30	Bidirectional Increase in Permeability of Nuclear Envelope upon Poliovirus Infection and Accompanying Alterations of Nuclear Pores. Journal of Virology, 2004, 78, 10166-10177.	3.4	102
31	Circulating vaccine-derived polioviruses: current state of knowledge. Bulletin of the World Health Organization, 2004, 82, 16-23.	3.3	135
32	Apoptosis-related fragmentation, translocation, and properties of human prothymosin alpha. Experimental Cell Research, 2003, 284, 209-221.	2.6	48
33	Retrospective Analysis of a Local Cessation of Vaccination against Poliomyelitis: a Possible Scenario for the Future. Journal of Virology, 2003, 77, 12460-12465.	3.4	65
34	Nonreplicative homologous RNA recombination: Promiscuous joining of RNA pieces?. Rna, 2003, 9, 1221-1231.	3.5	85
35	The Major Apoptotic Pathway Activated and Suppressed by Poliovirus. Journal of Virology, 2003, 77, 45-56.	3.4	80
36	Microarray analysis of evolution of RNA viruses: Evidence of circulation of virulent highly divergent vaccine-derived polioviruses. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9398-9403.	7.1	92

VADIM I AGOL

#	Article	IF	CITATIONS
37	Long-Term Circulation of Vaccine-Derived Poliovirus That Causes Paralytic Disease. Journal of Virology, 2002, 76, 6791-6799.	3.4	88
38	Unstable receptors disappear from cell surface during poliovirus infection. Medical Science Monitor, 2002, 8, BR391-6.	1.1	14
39	Poliovirus Protein 3A Inhibits Tumor Necrosis Factor (TNF)-Induced Apoptosis by Eliminating the TNF Receptor from the Cell Surface. Journal of Virology, 2001, 75, 10409-10420.	3.4	119
40	Early Alteration of Nucleocytoplasmic Traffic Induced by Some RNA Viruses. Virology, 2000, 275, 244-248.	2.4	55
41	Cross-talk between orientation-dependent recognition determinants of a complex control RNA element, the enterovirus oriR. Rna, 2000, 6, 976-987.	3.5	24
42	Evolution of Circulating Wild Poliovirus and of Vaccine-Derived Poliovirus in an Immunodeficient Patient: a Unifying Model. Journal of Virology, 2000, 74, 7381-7390.	3.4	125
43	Competing Death Programs in Poliovirus-Infected Cells: Commitment Switch in the Middle of the Infectious Cycle. Journal of Virology, 2000, 74, 5534-5541.	3.4	88
44	Prothymosin Î \pm fragmentation in apoptosis. FEBS Letters, 2000, 467, 150-154.	2.8	46
45	Paradoxes of the replication of picornaviral genomes. Virus Research, 1999, 62, 129-147.	2.2	100
46	Nonreplicative RNA Recombination in Poliovirus. Journal of Virology, 1999, 73, 8958-8965.	3.4	108
47	Distinct Attenuation Phenotypes Caused by Mutations in the Translational Starting Window of Theiler's Murine Encephalomyelitis Virus. Journal of Virology, 1999, 73, 3190-3196.	3.4	20
48	Two Types of Death of Poliovirus-Infected Cells: Caspase Involvement in the Apoptosis but Not Cytopathic Effect. Virology, 1998, 252, 343-353.	2.4	91
49	Modification of translational control elements as a new approach to design of attenuated picornavirus strains. Journal of Biotechnology, 1996, 44, 119-128.	3.8	26
50	Poliovirus Neurovirulence Correlates with the Presence of a Cryptic AUG Upstream of the Initiator Codon. Virology, 1996, 221, 141-150.	2.4	31
51	Final checkpoint in the drug-promoted and poliovirus-promoted apoptosis is under post-translational control by growth factors. Journal of Cellular Biochemistry, 1996, 63, 422-431.	2.6	15
52	A model for rearrangements in RNA genomes. Nucleic Acids Research, 1995, 23, 1870-1875.	14.5	68
53	Starting Window, a Distinct Element in the Cap-independent Internal Initiation of Translation on Picornaviral RNA. Journal of Molecular Biology, 1994, 241, 398-414.	4.2	76
54	Genetic studies on the poliovirus 2C protein, an NTPase A plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization. Journal of Molecular Biology, 1994, 236, 1310-1323.	4.2	92

VADIM I AGOL

#	Article	IF	CITATIONS
55	Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell, 1992, 68, 119-131.	28.9	307
56	Towards identification ofcis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Research, 1992, 20, 1739-1745.	14.5	146
57	Coupled mutations in the 5'-untranslated region of the Sabin poliovirus strains during in vivo passages: structural and functional implications. Virus Research, 1991, 21, 111-122.	2.2	52
58	Gross rearrangements within the 5′-untranslated region of the picornaviral genomes. Nucleic Acids Research, 1990, 18, 3371-3375.	14.5	39
59	Conserved structural domains in the 5′-untranslated region of picornaviral genomes: An analysis of the segment controlling translation and neurovirulence. Virology, 1989, 168, 201-209.	2.4	296
60	Point mutations modify the response of poliovirus RNA to a translation initiation factor: A comparison of neurovirulent and attenuated strains. Virology, 1988, 166, 394-404.	2.4	151
61	Small cytoplasmic RNA from mouse cells covalently linked to a protein. FEBS Letters, 1988, 232, 35-38.	2.8	17
62	Studies on the recombination between RNA genomes of poliovirus: The primary structure and nonrandom distribution of crossover regions in the genomes of intertypic poliovirus recombinants. Virology, 1987, 161, 54-61.	2.4	94
63	The primary structure of crossover regions of intertypic poliovirus recombinants: A model of recombination between RNA genomes. Virology, 1986, 155, 202-213.	2.4	147
64	The Genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology, 1985, 147, 243-252.	2.4	176
65	Encephalomyocarditis virus replication complexes preferentially utilizing nucleoside diphosphates as substrates for viral RNA synthesis. Nucleotide kinases specifically associated with the complex channel RNA precursor. FEBS Journal, 1984, 144, 249-254.	0.2	7
66	Translational Barrier in Central Region of Encephalomyocarditis Virus Genome. Modulation by Elongation Factor 2 (eEF-2). FEBS Journal, 1983, 133, 145-154.	0.2	24
67	Encephalomyocarditis virus replication complexes that Prefer nucleoside diphosphates as substrates for viral RNA synthesis. Virology, 1983, 129, 309-318.	2.4	11
68	Intertypic recombination in poliovirus: Genetic and biochemical studies. Virology, 1983, 124, 121-132.	2.4	82
69	Picornavirus Genome: an Overview. , 0, , 125-148.		17
70	Picornavirus Genetics: an Overview. , 0, , 269-284.		9

Picornavirus Genetics: an Overview., 0,, 269-284. 70