
Aswin Mangerich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Fat Diet and NAD + Activate Sirt1 to Rescue Premature Aging in Cockayne Syndrome. Cell Metabolism, 2014, 20, 840-855.	7.2	306
2	Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1820-9.	3.3	209
3	NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 2019, 10, 5284.	5.8	165
4	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	2.2	150
5	Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-19.	1.9	97
6	Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2332-41.	3.3	88
7	The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Research, 2018, 46, 804-822.	6.5	79
8	How to kill tumor cells with inhibitors of poly(ADPâ€ribosyl)ation. International Journal of Cancer, 2011, 128, 251-265.	2.3	77
9	PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4061-E4070.	3.3	66
10	Poly(ADP â€ribose)â€mediated interplay of XPA and PARP 1 leads to reciprocal regulation of protein function. FEBS Journal, 2014, 281, 3625-3641.	2.2	59
11	Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1. Mechanisms of Ageing and Development, 2010, 131, 389-404.	2.2	57
12	Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Molecular Cell, 2021, 81, 2640-2655.e8.	4.5	52
13	Quantification of Cellular Poly(ADP-ribosyl)ation by Stable Isotope Dilution Mass Spectrometry Reveals Tissue- and Drug-Dependent Stress Response Dynamics. ACS Chemical Biology, 2013, 8, 1567-1575.	1.6	50
14	Real-time monitoring of PARP1-dependent PARylation by ATR-FTIRÂspectroscopy. Nature Communications, 2020, 11, 2174.	5.8	50
15	PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Nucleic Acids Research, 2020, 48, 10015-10033.	6.5	47
16	Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells. Journal of Trace Elements in Medicine and Biology, 2014, 28, 138-146.	1.5	45
17	Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response. Metallomics, 2014, 6, 662-671.	1.0	44
18	Site-Specific Noncovalent Interaction of the Biopolymer Poly(ADP-ribose) with the Werner Syndrome Protein Regulates Protein Functions. ACS Chemical Biology, 2013, 8, 179-188.	1.6	41

ASWIN MANGERICH

#	Article	IF	CITATIONS
19	Chemistry meets biology in colitis-associated carcinogenesis. Free Radical Research, 2013, 47, 958-986.	1.5	39
20	RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Research Reviews, 2015, 23, 12-28.	5.0	36
21	The Nucleolus and PARP1 in Cancer Biology. Cancers, 2020, 12, 1813.	1.7	36
22	Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. Archives of Toxicology, 2020, 94, 967-1016.	1.9	36
23	Molecular mechanisms of Mn induced neurotoxicity: <scp>RONS</scp> generation, genotoxicity, and <scp>DNA</scp> â€damage response. Molecular Nutrition and Food Research, 2013, 57, 1255-1269.	1.5	34
24	Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. Nature Communications, 2021, 12, 4581.	5.8	34
25	Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). Nucleic Acids Research, 2021, 49, 8432-8448.	6.5	30
26	Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicology Letters, 2016, 244, 56-71.	0.4	29
27	Kinetics of poly(ADP-ribosyl)ation, but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo. Nucleic Acids Research, 2017, 45, 11174-11192.	6.5	28
28	PARP1 regulates DNA damage-induced nucleolar-nucleoplasmic shuttling of WRN and XRCC1 in a toxicant and protein-specific manner. Scientific Reports, 2019, 9, 10075.	1.6	24
29	A mass spectrometric platform for the quantitation of sulfur mustard-induced nucleic acid adducts as mechanistically relevant biomarkers of exposure. Archives of Toxicology, 2019, 93, 61-79.	1.9	24
30	Chemical warfare in the First World War: reflections 100Âyears later. Archives of Toxicology, 2014, 88, 1909-1911.	1.9	23
31	Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa <i>PARP1</i> knock-out cells. Nucleic Acids Research, 2016, 44, gkw859.	6.5	23
32	Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes. DNA Repair, 2015, 28, 37-47.	1.3	21
33	Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology, 2019, 420, 29-38.	2.0	21
34	The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. Journal of Trace Elements in Medicine and Biology, 2020, 57, 21-27.	1.5	21
35	Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Research, 2019, 47, 4843-4858.	6.5	20
36	Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure?. Toxicology Letters, 2018, 293, 21-30.	0.4	19

ASWIN MANGERICH

#	Article	IF	CITATIONS
37	Increased Levels of Inosine in a Mouse Model of Inflammation. Chemical Research in Toxicology, 2013, 26, 538-546.	1.7	15
38	An automated Fpg-based FADU method for the detection of oxidative DNA lesions and screening of antioxidants. Toxicology, 2013, 310, 15-21.	2.0	14
39	Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry. Methods in Molecular Biology, 2017, 1608, 3-18.	0.4	13
40	AÂcombined approach of surface passivation and specific immobilization to study biomolecules by ATR-FTIR spectroscopy1. Biomedical Spectroscopy and Imaging, 2018, 7, 25-33.	1.2	13
41	A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Research, 2009, 18, 261-279.	1.3	12
42	Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities. Molecular and Cellular Biology, 2015, 35, 3974-3989.	1.1	12
43	PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity. Archives of Toxicology, 2018, 92, 1323-1340.	1.9	11
44	Fueling genome maintenance: On the versatile roles of NAD+Âin preserving DNA integrity. Journal of Biological Chemistry, 2022, 298, 102037.	1.6	11
45	NAD+ in sulfur mustard toxicity. Toxicology Letters, 2020, 324, 95-103.	0.4	10
46	Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Research, 2019, 47, 7418-7429.	6.5	9
47	Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions. Toxicology Letters, 2016, 244, 72-80.	0.4	7
48	A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice: Impact of Sex and Age. International Journal of Molecular Sciences, 2020, 21, 6600.	1.8	7
49	Long-term simulation of lead concentrations in agricultural soils in relation to human adverse health effects. Archives of Toxicology, 2020, 94, 2319-2329.	1.9	6
50	Quantitative analysis of WRN exonuclease activity by isotope dilution mass spectrometry. Mechanisms of Ageing and Development, 2012, 133, 575-579.	2.2	5
51	Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Archives of Toxicology, 2021, 95, 727-747.	1.9	5
52	Impact of the Cellular Zinc Status on PARP-1 Activity and Genomic Stability in HeLa S3 Cells. Chemical Research in Toxicology, 2021, 34, 839-848.	1.7	5
53	The C-Terminal Domain of Y-Box Binding Protein 1 Exhibits Structure-Specific Binding to Poly(ADP-Ribose), Which Regulates PARP1 Activity. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
54	PARP1 and XRCC1 exhibit a reciprocal relationship in genotoxic stress response. Cell Biology and Toxicology, 2023, 39, 345-364.	2.4	3

ASWIN MANGERICH

#	Article	IF	CITATIONS
55	Multitasking Roles for Poly(ADP-ribosyl)ation in Aging and Longevity. Cancer Drug Discovery and Development, 2015, , 125-179.	0.2	1
56	A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure. Chemico-Biological Interactions, 2019, 298, 121-128.	1.7	1
57	Identifying ADP-ribosylation targets by chemical genetics. Translational Cancer Research, 2016, 5, S1163-S1166.	0.4	1
58	Ex vivo quantification of cellular poly(ADP-ribose) by isotope dilution mass spectrometry. Experimental Gerontology, 2013, 48, 691.	1.2	0
59	Functional regulation of the Werner protein by poly(ADP-ribose) and PARP-1. Experimental Gerontology, 2013, 48, 691.	1.2	0
60	Functional regulation of the DNA repair protein XPA by poly(ADP-ribose). Experimental Gerontology, 2013, 48, 691.	1.2	0
61	Functional interactions of WRN with PARP1 and poly(ADP-ribose). Experimental Gerontology, 2017, 94, 119-120.	1.2	0
62	Detection of Aristolochic acid I DNA adducts via UPLC-MS/MS in RPTEC/TERT1 cells. Toxicology Letters, 2017, 280, S197.	0.4	0
63	Abstract 2885: Features of innate immunity dominate serum and tissue protein and cytokine profiles in both mouse and human inflammatory bowel disease , 2013, , .		0
64	Base Excision Repair Glycosylase Activity Is Impaired in a Subgroup of Acute Myeloid Leukemia Resulting in Increased Levels of Oxidative Base Lesions. Blood, 2014, 124, 860-860.	0.6	0