Wolfgang Langhans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The physiological control of eating: signals, neurons, and networks. Physiological Reviews, 2022, 102, 689-813.	13.1	60
2	Vagal afferent cholecystokinin receptor activation is required for glucagonâ€like peptideâ€l–induced satiation. Diabetes, Obesity and Metabolism, 2022, 24, 268-280.	2.2	11
3	The Medullary Targets of Neurally Conveyed Sensory Information from the Rat Hepatic Portal and Superior Mesenteric Veins. ENeuro, 2021, 8, ENEURO.0419-20.2021.	0.9	12
4	Dysfunctional Eating Behaviour and Leptin in Middle-Aged Women: Role of Menopause and a History of Anorexia Nervosa. International Journal of Behavioral Medicine, 2021, 28, 641-646.	0.8	1
5	Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Molecular Metabolism, 2021, 51, 101237.	3.0	27
6	Central and peripheral GLP-1 systems independently suppress eating. Nature Metabolism, 2021, 3, 258-273.	5.1	107
7	Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Reports, 2020, 30, 2028-2039.e4.	2.9	23
8	Editors' Picks for 2018 demonstrate the diversity of research in regulatory, integrative, and comparative physiology. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R143-R146.	0.9	0
9	Abdominal vagal deafferentation alters affective behaviors in rats. Journal of Affective Disorders, 2019, 252, 404-412.	2.0	13
10	Serendipity and spontaneity – Critical components in 40†years of academia. Physiology and Behavior, 2019, 204, 76-85.	1.0	0
11	Roux-en-Y gastric bypass surgery reprograms enterocyte triglyceride metabolism and postprandial secretion in rats. Molecular Metabolism, 2019, 23, 51-59.	3.0	12
12	A Rat Model of Human Lipid Emulsion Digestion. Frontiers in Nutrition, 2019, 6, 170.	1.6	7
13	Novel role of GLP-1 receptor signaling in energy expenditure during chronic high fat diet feeding in rats. Physiology and Behavior, 2018, 192, 194-199.	1.0	15
14	Oleoylethanolamide-induced anorexia in rats is associated with locomotor impairment. Physiological Reports, 2018, 6, e13517.	0.7	7
15	Abdominal Vagal Afferents Modulate the Brain Transcriptome and Behaviors Relevant to Schizophrenia. Journal of Neuroscience, 2018, 38, 1634-1647.	1.7	28
16	Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Molecular Metabolism, 2018, 11, 33-46.	3.0	66
17	Food Components in Health Promotion and Disease Prevention. Journal of Agricultural and Food Chemistry, 2018, 66, 2287-2294.	2.4	26
18	Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R708-R720.	0.9	39

WOLFGANG LANGHANS

#	Article	IF	CITATIONS
19	Intestinal lymph as a readout of meal-induced GLP-1 release in an unrestrained rat model. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R724-R733.	0.9	10
20	Reciprocal Interactions Between Gut Microbiota and Host Social Behavior. Frontiers in Integrative Neuroscience, 2018, 12, 21.	1.0	59
21	Enhancing enterocyte fatty acid oxidation in mice affects glycemic control depending on dietary fat. Scientific Reports, 2018, 8, 10818.	1.6	16
22	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
23	Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity. JCI Insight, 2018, 3, .	2.3	10
24	Metabolic Adaptation of the Small Intestine to Short- and Medium-Term High-Fat Diet Exposure. Journal of Cellular Physiology, 2017, 232, 167-175.	2.0	37
25	Cognitive effects of subdiaphragmatic vagal deafferentation in rats. Neurobiology of Learning and Memory, 2017, 142, 190-199.	1.0	19
26	Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines. Nanotoxicology, 2017, 11, 496-506.	1.6	36
27	Intestinal SIRT3 overexpression in mice improves whole body glucose homeostasis independent of body weight. Molecular Metabolism, 2017, 6, 1264-1273.	3.0	18
28	A case-control field study on the relationships among type 2 diabetes, sleepiness and habitual caffeine intake. Journal of Psychopharmacology, 2017, 31, 233-242.	2.0	11
29	Knockdown of GLP-1 Receptors in Vagal Afferents Affects Normal Food Intake and Glycemia. Diabetes, 2016, 65, 34-43.	0.3	178
30	Dietary thylakoids reduce visceral fat mass and increase expression of genes involved in intestinal fatty acid oxidation in high-fat fed rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R618-R627.	0.9	6
31	Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Molecular Metabolism, 2016, 5, 552-565.	3.0	19
32	Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis. Cell Metabolism, 2016, 23, 971-979.	7.2	14
33	Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis. Metabolism: Clinical and Experimental, 2016, 65, 8-17.	1.5	22
34	Nutrientâ€Induced Metabolism Dictates Intestinal Epithelial Crypt Proliferation. FASEB Journal, 2016, 30, lb695.	0.2	1
35	Inconsistencies in the hypophagic action of intracerebroventricular insulin in mice. Physiology and Behavior, 2015, 151, 623-628.	1.0	8
36	Vagal mediation of GLP-1's effects on food intake and glycemia. Physiology and Behavior, 2015, 152, 372-380.	1.0	35

#	Article	IF	CITATIONS
37	Enhancing hepatic mitochondrial fatty acid oxidation stimulates eating in food-deprived mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R131-R137.	0.9	5
38	Long-term pathological consequences of prenatal infection: beyond brain disorders. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1-R12.	0.9	68
39	A novel fat connection from gut to brain. Journal of Physiology, 2015, 593, 1757-1758.	1.3	0
40	PYY3–36: Beyond food intake. Frontiers in Neuroendocrinology, 2015, 38, 1-11.	2.5	40
41	Vagal afferents are not necessary for the satiety effect of the gut lipid messenger oleoylethanolamide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R167-R178.	0.9	35
42	Circulating Glucagon-like Peptide-1 (GLP-1) Inhibits Eating in Male Rats by Acting in the Hindbrain and Without Inducing Avoidance. Endocrinology, 2014, 155, 1690-1699.	1.4	47
43	Gut Vagal Afferents Differentially Modulate Innate Anxiety and Learned Fear. Journal of Neuroscience, 2014, 34, 7067-7076.	1.7	118
44	Chronic high fat diet consumption impairs sensorimotor gating in mice. Psychoneuroendocrinology, 2013, 38, 2562-2574.	1.3	38
45	Administration of the Y2 Receptor Agonist PYY3-36 in Mice Induces Multiple Behavioral Changes Relevant to Schizophrenia. Neuropsychopharmacology, 2013, 38, 2446-2455.	2.8	29
46	Priming of Metabolic Dysfunctions by Prenatal Immune Activation in Mice: Relevance to Schizophrenia. Schizophrenia Bulletin, 2013, 39, 319-329.	2.3	50
47	Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. Journal of Lipid Research, 2013, 54, 1369-1384.	2.0	41
48	Possible Role of Intestinal Fatty Acid Oxidation in the Eating-Inhibitory Effect of the PPAR-α Agonist Wy-14643 in High-Fat Diet Fed Rats. PLoS ONE, 2013, 8, e74869.	1.1	46
49	Inconsistencies in the assessment of food intake. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1408-E1418.	1.8	37
50	Meal-contingent intestinal lymph sampling from awake, unrestrained rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1365-R1371.	0.9	15
51	The effect of TNFα on food intake and central insulin sensitivity in rats. Physiology and Behavior, 2011, 103, 17-20.	1.0	11
52	Intragastric infusion of pea-protein hydrolysate reduces test-meal size in rats more than pea protein. Physiology and Behavior, 2011, 104, 1041-1047.	1.0	7
53	Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R554-R565.	0.9	55
54	Serotonin 2C receptor signaling in a diffuse neuronal network is necessary for LPS anorexia. Brain Research, 2010, 1306, 77-84.	1.1	12

WOLFGANG LANGHANS

#	Article	IF	CITATIONS
55	Overview of the Physiological Control of Eating. Forum of Nutrition, 2010, 63, 9-53.	3.7	37
56	A new look on brain mechanisms of acute illness anorexia. Physiology and Behavior, 2010, 100, 464-471.	1.0	36
57	Effects of anesthesia and blood sampling techniques on plasma metabolites and corticosterone in the rat. Physiology and Behavior, 2010, 99, 592-598.	1.0	58
58	The Enterocyte as an Energy Flow Sensor in the Control of Eating. Forum of Nutrition, 2010, 63, 75-84.	3.7	11
59	Intrameal Hepatic Portal and Intraperitoneal Infusions of Glucagon-Like Peptide-1 Reduce Spontaneous Meal Size in the Rat via Different Mechanisms. Endocrinology, 2009, 150, 1174-1181.	1.4	231
60	Control of eating by hepatic oxidation of fatty acids. A note of caution. Author's Reply. Appetite, 2009, 53, 274-276.	1.8	2
61	Acute effects of pharmacological modifications of fatty acid metabolism on human satiety. British Journal of Nutrition, 2009, 101, 1867-1877.	1.2	22
62	Dissociation of mercaptoacetate's effects on feeding and fat metabolism by dietary medium- and long-chain triacylglycerols in rats. Nutrition, 2008, 24, 360-365.	1.1	13
63	Fatty acid oxidation in the energostatic control of eating—A new idea. Appetite, 2008, 51, 446-451.	1.8	35
64	Intraperitoneal injections of low doses of C75 elicit a behaviorally specific and vagal afferent-independent inhibition of eating in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R799-R805.	0.9	12
65	Signals generating anorexia during acute illness. Proceedings of the Nutrition Society, 2007, 66, 321-330.	0.4	71
66	Vagal afferents mediate the feeding response to mercaptoacetate but not to the beta (3) adrenergic receptor agonist CL 316,243. Neuroscience Letters, 2007, 411, 104-107.	1.0	25
67	Pharmacological, but not genetic, disruptions in 5-HT2C receptor function attenuate LPS anorexia in mice. Pharmacology Biochemistry and Behavior, 2007, 86, 493-498.	1.3	13
68	Caprylic acid infusion acts in the liver to decrease food intake in rats. Physiology and Behavior, 2006, 87, 388-395.	1.0	18
69	Mercaptoacetate fails to block the feeding-inhibitory effect of the β3-adrenergic receptor agonist CGP 12177A. Physiology and Behavior, 2006, 89, 128-132.	1.0	6
70	Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiology and Behavior, 2006, 89, 329-334.	1.0	15
71	Beta-adrenergic-mediated inhibition of feeding by mercaptoacetate in food-deprived rats. Pharmacology Biochemistry and Behavior, 2006, 85, 722-727.	1.3	11
72	Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1219-1235.	1.8	203

#	Article	IF	CITATIONS
73	Gut Vagal Afferents Are Not Necessary for the Eating-Stimulatory Effect of Intraperitoneally Injected Ghrelin in the Rat. Journal of Neuroscience, 2006, 26, 11052-11060.	1.7	209
74	Estradiol-mediated increases in the anorexia induced by intraperitoneal injection of bacterial lipopolysaccharide in female rats. Physiology and Behavior, 2004, 82, 251-261.	1.0	30
75	Fatty acid oxidation and control of food intake. Physiology and Behavior, 2004, 83, 645-651.	1.0	84
76	Evidence that the anorexia induced by lipopolysaccharide is mediated by the 5-HT2C receptor. Pharmacology Biochemistry and Behavior, 2003, 74, 505-512.	1.3	34
77	Evidence for a role of the 5-HT2C receptor in central lipopolysaccharide-, interleukin-1β-, and leptin-induced anorexia. Pharmacology Biochemistry and Behavior, 2003, 74, 1025-1031.	1.3	52
78	Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Research Bulletin, 2001, 54, 443-453.	1.4	215
79	Cognitive performance and its relationship with postprandial metabolic changes after ingestion of different macronutrients in the morning. British Journal of Nutrition, 2001, 85, 393-405.	1.2	69
80	Anorexia of infection: current prospects. Nutrition, 2000, 16, 996-1005.	1.1	152
81	Role of rumen fluid hypertonicity in the dehydration-induced hypophagia of cows. Physiology and Behavior, 2000, 71, 423-430.	1.0	9
82	Suppression of hepatic fatty acid oxidation and food intake in men. Nutrition, 1999, 15, 819-828.	1.1	86
83	Effect of Water Deprivation on Eating Patterns of Lactating Cows Fed Grass and Corn Pellets Ad Lib. Physiology and Behavior, 1996, 60, 1413-1418.	1.0	26
84	Metabolic and glucostatic control of feeding. Proceedings of the Nutrition Society, 1996, 55, 497-515.	0.4	67
85	Role of the liver in the metabolic control of eating: What we know—and what we do not know. Neuroscience and Biobehavioral Reviews, 1996, 20, 145-153.	2.9	66
86	Does a learned taste aversion contribute to the anorectic effect of bacterial lipopolysaccharide?. Physiology and Behavior, 1993, 54, 961-966.	1.0	32
87	Verapamil and indomethacin attenuate endotoxin-induced anorexia. Physiology and Behavior, 1989, 46, 535-539.	1.0	72