Jiashen Teh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270639/publications.pdf

Version: 2024-02-01

172457 223800 2,239 74 29 46 h-index citations g-index papers 75 75 75 1111 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impacts of Demand-Side Management on Electrical Power Systems: A Review. Energies, 2018, 11, 1050.	3.1	141
2	Reliability Impact of Dynamic Thermal Rating System in Wind Power Integrated Network. IEEE Transactions on Reliability, 2016, 65, 1081-1089.	4.6	122
3	Optimum allocation of battery energy storage systems for power grid enhanced with solar energy. Energy, 2021, 223, 120105.	8.8	114
4	Development of Energy Storage Systems for Power Network Reliability: A Review. Energies, 2018, 11, 2278.	3.1	112
5	Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability. Applied Energy, 2022, 305, 117837.	10.1	99
6	Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability. IEEE Access, 2020, 8, 181547-181559.	4.2	91
7	Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability. IEEE Transactions on Reliability, 2017, 66, 1110-1119.	4.6	90
8	Prospects of Using the Dynamic Thermal Rating System for Reliable Electrical Networks: A Review. IEEE Access, 2018, 6, 26765-26778.	4.2	87
9	Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks. Sustainable Energy, Grids and Networks, 2019, 20, 100268.	3.9	77
10	Uncertainty Analysis of Transmission Line End-of-Life Failure Model for Bulk Electric System Reliability Studies. IEEE Transactions on Reliability, 2018, 67, 1261-1268.	4.6	71
11	Optimum Network Ageing and Battery Sizing for Improved Wind Penetration and Reliability. IEEE Access, 2020, 8, 118603-118611.	4.2	71
12	Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems. Energy Reports, 2022, 8, 3263-3288.	5.1	66
13	Reliability Impacts of the Dynamic Thermal Rating System on Smart Grids Considering Wireless Communications. IEEE Access, 2019, 7, 41625-41635.	4.2	64
14	Critical span identification model for dynamic thermal rating system placement. IET Generation, Transmission and Distribution, 2015, 9, 2644-2652.	2.5	63
15	Impacts of Energy Storage System on Power System Reliability: A Systematic Review. Energies, 2018, 11, 1749.	3.1	63
16	Surveys on the reliability impacts of power system cyber–physical layers. Sustainable Cities and Society, 2020, 62, 102384.	10.4	58
17	Risk-Based Management of Transmission Lines Enhanced With the Dynamic Thermal Rating System. IEEE Access, 2019, 7, 76562-76572.	4.2	49
18	Three-Phase Series Resonant DC-DC Boost Converter With Double LLC Resonant Tanks and Variable Frequency Control. IEEE Access, 2020, 8, 22386-22399.	4.2	48

#	Article	IF	CITATIONS
19	Impact of the Integration of Information and Communication Technology on Power System Reliability: A Review. IEEE Access, 2020, 8, 24600-24615.	4.2	48
20	Risk informed design modification of dynamic thermal rating system. IET Generation, Transmission and Distribution, 2015, 9, 2697-2704.	2.5	41
21	Advances in reduction of total harmonic distortion in solar photovoltaic systems: A literature review. International Journal of Energy Research, 2020, 44, 2455-2470.	4.5	40
22	State-of-Charge Balancing Control for ON/OFF-Line Internal Cells Using Hybrid Modular Multi-Level Converter and Parallel Modular Dual L-Bridge in a Grid-Scale Battery Energy Storage System. IEEE Access, 2019, 7, 131-147.	4.2	39
23	A Systematic Review of Reliability Studies on Composite Power Systems: A Coherent Taxonomy Motivations, Open Challenges, Recommendations, and New Research Directions. Energies, 2018, 11, 2417.	3.1	37
24	Multi-Objective Optimization of Solar/Wind Penetration in Power Generation Systems. IEEE Access, 2019, 7, 169094-169106.	4.2	37
25	Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System. Energies, 2018, 11, 2649.	3.1	36
26	Impact of Demand-Side Management on the Reliability of Generation Systems. Energies, 2018, 11, 2155.	3.1	34
27	Composite Reliability Evaluation of Load Demand Side Management and Dynamic Thermal Rating Systems. Energies, 2018, 11, 466.	3.1	34
28	Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing. IEEE Access, 2020, 8, 175319-175328.	4.2	34
29	Reliability Modeling of PV Systems Based on Time-Varying Failure Rates. IEEE Access, 2020, 8, 14367-14376.	4.2	34
30	Integration of Wind and Demand Response for Optimum Generation Reliability, Cost and Carbon Emission. IEEE Access, 2020, 8, 183606-183618.	4.2	30
31	Improving the Penetration of Wind Power with Dynamic Thermal Rating System, Static VAR Compensator and Multi-Objective Genetic Algorithm. Energies, 2018, 11, 815.	3.1	29
32	A New Solar Radiation Model for a Power System Reliability Study. IEEE Access, 2019, 7, 64758-64766.	4.2	27
33	Non-isolated conventional DC-DC converter comparison for a photovoltaic system: A review. Journal of Renewable and Sustainable Energy, 2020, 12, .	2.0	25
34	Fuzzy Dynamic Thermal Rating System-Based SIPS for Enhancing Transmission Line Security. IEEE Access, 2021, 9, 83628-83641.	4.2	24
35	Composite Reliability Impacts of Synchrophasor-Based DTR and SIPS Cyber–Physical Systems. IEEE Systems Journal, 2022, 16, 3927-3938.	4.6	23
36	Impacts of Communication Network Availability on Synchrophasor-Based DTR and SIPS Reliability. IEEE Systems Journal, 2022, 16, 6231-6242.	4.6	19

#	Article	IF	Citations
37	Photovoltaic Integrated Shunt Active Power Filter with Simpler ADALINE Algorithm for Current Harmonic Extraction. Energies, 2018, 11, 1152.	3.1	17
38	Predictive Adaptive Filter for Reducing Total Harmonics Distortion in PV Systems. Energies, 2020, 13, 3286.	3.1	17
39	Genetic algorithm with small population size for search feasible control parameters for parallel hybrid electric vehicles. AIMS Energy, 2017, 5, 930-943.	1.9	16
40	A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control. Energies, 2018, 11, 623.	3.1	14
41	Memetic algorithm for fuel economy and low emissions parallel hybrid electric vehicles. , 2017, , .		12
42	A reflex-charging based bidirectional DC charger for light electric vehicle and DC-microgrids. , 2017, ,		9
43	A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers. Energies, 2017, 10, 1128.	3.1	9
44	Cell Balancing Topologies in Battery Energy Storage Systems: A Review. Lecture Notes in Electrical Engineering, 2019, , 159-165.	0.4	9
45	Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage. Energies, 2020, 13, 1234.	3.1	8
46	Upgrading of the Existing Bi-Pole to the New Four-Pole Back-to-Back HVDC Converter for Greater Reliability and Power Quality. IEEE Access, 2019, 7, 145532-145545.	4.2	7
47	Dynamic Thermal Rating Forecasting Methods: A Systematic Survey. IEEE Access, 2022, 10, 65193-65205.	4.2	7
48	Reliability and Power Density Increase in a Novel Four-Pole System for Line-Commutated Converter HVDC Transmission. IEEE Access, 2019, 7, 10057-10076.	4.2	6
49	Optimization of Control Strategy for Hybrid Electric Vehicles Based on Improved Genetic Algorithm. , 2017, , .		5
50	An efficient active ripple filter for use in single-phase DC-AC conversion system. , 2017, , .		3
51	Composite reliability evaluation for transmission network planning. AIMS Energy, 2018, 6, 170-186.	1.9	3
52	Fuzzy Dynamic Thermal Rating System-Based Thermal Aging Model for Transmission Lines. Energies, 2022, 15, 4395.	3.1	3
53	Application of Particle Swarm Optimization to Design Control Strategy Parameters of Parallel Hybrid Electric Vehicle with Fuel Economy and Low Emission. , 2018, , .		2
54	A Novel Quad 12-pulse Four-Pole System Using an Existing 12-pulse Bi-pole System for Back-to-Back HVDC System. , 2018, , .		2

#	Article	IF	Citations
55	Active Power Filtering Under Unbalanced and Distorted Grid Conditions Using Modular Fundamental Element Detection Technique. IEEE Access, 2021, 9, 107502-107518.	4.2	2
56	Kalman Filter for Reducing Total Harmonics Distortion in Stand-alone PV System., 2020,,.		2
57	Maximization of wind energy utilization through a multi-objective optimization framework. , 2017, , .		1
58	Impact of DTR system on the tranmission line reliability model. , 2017, , .		1
59	Impact of Demand Side Management and Dynamic Thermal Rating System on the Reliability of Power Systems. , 2018, , .		1
60	Evolutionary Computation-Based Memetic Algorithm Against Genetic Algorithm to Improve PCR-RFLP Assay Primers of SNP Genotyping. IEEE Access, 2018, 6, 77807-77815.	4.2	1
61	Power Quality Improvements in a Novel 24-Pulse Line Commutated Converter HVDC Transmission System. Lecture Notes in Electrical Engineering, 2019, , 221-227.	0.4	1
62	Fuzzy Evaluation of Transmission Line End-of-Life Reliability Model. , 2019, , .		1
63	Bank Division Topology for Existing Hierarchical Balancing Control in a Grid-Scale Battery Energy Storage System. Lecture Notes in Electrical Engineering, 2019, , 151-157.	0.4	1
64	An Investigation of Reactive-Active Power Control Approach for Grid-Connected PV Arrays in a Low Voltage Distribution System. Lecture Notes in Electrical Engineering, 2019, , 213-219.	0.4	1
65	Reliability Impacts of ICT Failures on Synchrophasor Based Dynamic Thermal Rating System. Lecture Notes in Electrical Engineering, 2022, , 337-343.	0.4	1
66	Risk assessment of dynamic thermal rating system. , 2015, , .		0
67	A framework for transmission network planning. , 2017, , .		0
68	Sustaining Learning in Engineering Capstone Design using Sociomaterial Approaches. , 2017, , .		0
69	A Bidirectional Converter with Hybrid Energy Sources for Light Electric Vehicle (LEV)., 2018,,.		0
70	Development of a Novel Battery-Powered DC-AC System., 2019,,.		0
71	Reliability effects of the dynamic thermal rating system on wind energy integrations. , 2021, , 461-479.		0
72	Automated Compilation Test System for Embedded System. Makara Journal of Technology, 2019, 22, 115.	0.3	0

#	Article	IF	CITATIONS
73	Comparison of Buck-Boost Derived Non-isolated DC-DC Converters in a Photovoltaic System. Lecture Notes in Electrical Engineering, 2021, , 1023-1037.	0.4	O
74	Determination of Solar Penetration Through Multi-objective Optimisation Framework. Lecture Notes in Electrical Engineering, 2022, , 331-336.	0.4	0