
Yaser Jafarian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270601/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Assessment of liquefaction triggering using strain energy concept and ANN model: Capacity Energy. Soil Dynamics and Earthquake Engineering, 2007, 27, 1056-1072.	3.8	106
2	Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments. Soil Dynamics and Earthquake Engineering, 2012, 35, 13-28.	3.8	82
3	Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions. Soils and Foundations, 2018, 58, 172-184.	3.1	76
4	Undrained Cyclic and Monotonic Behavior of Hormuz Calcareous Sand Using Hollow Cylinder Simple Shear Tests. International Journal of Civil Engineering, 2016, 14, 209-219.	2.0	43
5	Prediction of strain energy-based liquefaction resistance of sand–silt mixtures: An evolutionary approach. Computers and Geosciences, 2011, 37, 1883-1893.	4.2	42
6	Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: Experimental and comparative study. Soil Dynamics and Earthquake Engineering, 2018, 107, 339-349.	3.8	39
7	Empirical predictive model for the vmax/amax ratio of strong ground motions using genetic programming. Computers and Geosciences, 2010, 36, 1523-1531.	4.2	36
8	Simplified Procedure for Coupled Seismic Sliding Movement of Slopes Using Displacement-Based Critical Acceleration. International Journal of Geomechanics, 2016, 16, .	2.7	36
9	Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands. Geo-Marine Letters, 2018, 38, 315-322.	1.1	35
10	Centrifuge and Numerical Models to Investigate Liquefaction-Induced Response of Shallow Foundations with Different Contact Pressures. International Journal of Civil Engineering, 2016, 14, 117-131.	2.0	31
11	On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: A numerical study. Computers and Geotechnics, 2011, 38, 800-808.	4.7	28
12	Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand. Journal of Zhejiang University: Science A, 2013, 14, 739-750.	2.4	28
13	Decoupled Solution for Seismic Permanent Displacement of Earth Slopes Using Deformation-Dependent Yield Acceleration. Journal of Earthquake Engineering, 2012, 16, 917-936.	2.5	27
14	Dynamic Properties of Calcareous Sand from the Persian Gulf in Comparison with Siliceous Sands Database. International Journal of Civil Engineering, 2020, 18, 245-249.	2.0	26
15	Probabilistic Assessment of Liquefaction Occurrence in Calcareous Fill Materials of Kawaihae Harbor, Hawaii. International Journal of Geomechanics, 2016, 16, .	2.7	25
16	Estimating shear wave velocity of soil deposits using polynomial neural networks: Application to liquefaction. Computers and Geosciences, 2012, 44, 86-94.	4.2	23
17	Seismic Sliding Analysis of Sandy Slopes Subjected to Pore-Water Pressure Buildup. International Journal of Geomechanics, 2017, 17, .	2.7	23
18	Small-strain dynamic properties of siliceous-carbonate sand under stress anisotropy. Soil Dynamics and Earthquake Engineering, 2020, 131, 106045.	3.8	23

YASER JAFARIAN

#	Article	IF	CITATIONS
19	Simplified Soil Liquefaction Assessment Based on Cumulative Kinetic Energy Density: Attenuation Law and Probabilistic Analysis. International Journal of Geomechanics, 2014, 14, 267-281.	2.7	22
20	Centrifuge modeling of seismic foundation-soil-foundation interaction on liquefiable sand. Soil Dynamics and Earthquake Engineering, 2017, 97, 184-204.	3.8	22
21	Centrifuge study into the effect of liquefaction extent on permanent settlement and seismic response of shallow foundations. Soils and Foundations, 2018, 58, 228-240.	3.1	22
22	Predictive model for seismic sliding displacement of slopes based on a coupled stick-slip-rotation approach. Engineering Geology, 2018, 244, 25-40.	6.3	20
23	Bearing Capacity and Uneven Settlement of Consecutively Constructed Adjacent Footings Rested on Saturated Sand Using Model Tests. International Journal of Civil Engineering, 2019, 17, 737-749.	2.0	20
24	Seismic hazard analysis and local site effect of the 2017 Mw 7.3 Sarpol-e Zahab, Iran, earthquake. Natural Hazards, 2020, 103, 1783-1805.	3.4	20
25	Multivariate Fragility Functions for Seismic Landslide Hazard Assessment. Journal of Earthquake Engineering, 2021, 25, 579-596.	2.5	17
26	Predicting damping ratio of fine-grained soils using soft computing methodology. Arabian Journal of Geosciences, 2015, 8, 3959-3969.	1.3	16
27	Probabilistic correlation between laboratory and field liquefaction potentials using relative state parameter index (ξR). Soil Dynamics and Earthquake Engineering, 2010, 30, 1061-1072.	3.8	15
28	Scalar- and Vector-Valued Fragility Analyses of Gravity Quay Wall on Liquefiable Soil: Example of Kobe Port. International Journal of Geomechanics, 2019, 19, .	2.7	14
29	A coupled stick-slip-rotation model for earthquake-induced sliding displacement of slopes in Iran. Soil Dynamics and Earthquake Engineering, 2020, 135, 106199.	3.8	14
30	A micromechanical-based constitutive model for fibrous fine-grained composite soils. International Journal of Plasticity, 2017, 89, 150-172.	8.8	13
31	Load-Settlement Mechanism of Shallow Foundations Rested on Saturated Sand with Upward Seepage. International Journal of Geomechanics, 2017, 17, .	2.7	12
32	Physical and mechanical properties of sand stabilized by cement and natural zeolite. European Physical Journal Plus, 2018, 133, 1.	2.6	11
33	Seismic performance of end-bearing piled raft with countermeasure strategy against liquefaction using centrifuge model tests. Bulletin of Earthquake Engineering, 2019, 17, 5929-5961.	4.1	11
34	Prediction of cyclic resistance ratio for silty sands and its applications in the simplified liquefaction analysis. Computers and Geotechnics, 2013, 52, 54-62.	4.7	9
35	Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach. Earthquake Engineering and Engineering Vibration, 2014, 13, 555-568.	2.3	9
36	Impacts of Fixed-End and Flexible Boundary Conditions on Seismic Response of Shallow Foundations on Saturated Sand in 1-g Shaking Table Tests. Geotechnical Testing Journal, 2021, 44, 637-664.	1.0	9

YASER JAFARIAN

#	Article	IF	CITATIONS
37	Shaking Table Experiments to Evaluate the Boundary Effects on Seismic Response of Saturated and Dry Sands in Level Ground Condition. International Journal of Civil Engineering, 2020, 18, 783-795.	2.0	8
38	Empirical model for frequency content estimation of strong ground motion records of Iran. Engineering Geology, 2022, 297, 106526.	6.3	8
39	Closure to "Simplified Procedure for Coupled Seismic Sliding Movement of Slopes Using Displacement-Based Critical Acceleration―by Yaser Jafarian and Ali Lashgari. International Journal of Geomechanics, 2017, 17, .	2.7	7
40	Predictive model for seismic sliding displacement of slopes subjected to pulse-like motions. Bulletin of Engineering Geology and the Environment, 2021, 80, 6563-6582.	3.5	7
41	Prediction and experimental evaluation of soil-water retention behavior of skeletal calcareous soils. Bulletin of Engineering Geology and the Environment, 2020, 79, 2395-2410.	3.5	6
42	The unsaturated shear strength of calcareous soil in comparison with silicate soil. Marine Georesources and Geotechnology, 2021, 39, 200-218.	2.1	6
43	Probabilistic evaluation of seismic liquefaction potential in field conditions. Engineering Computations, 2011, 28, 675-700.	1.4	5
44	Seismic in-Soil Isolation of Solid Waste Landfill Using Geosynthetic Liners: Shaking Table Modeling of Tehran Landfill. International Journal of Civil Engineering, 2019, 17, 205-217.	2.0	4
45	Centrifuge Modeling for Seismic Performance of Floating Piled Raft with and without Drainage Wells in Liquefiable Site. International Journal of Geomechanics, 2021, 21, .	2.7	1
46	Effect of non-liquefiable layer on bearing capacity and settlement of shallow foundations. International Journal of Physical Modelling in Geotechnics, 2021, 21, 72-84.	0.6	0
47	Mitigating Liquefaction-Induced Displacements of Shallow Foundation using Helical Piles. International Journal of Physical Modelling in Geotechnics, 0, , 1-58.	0.6	Ο