Colin F Greineder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	31.5	57
2	A Bioreactor for 3D In Vitro Modeling of the Mechanical Stimulation of Osteocytes. Frontiers in Bioengineering and Biotechnology, 2022, 10, 797542.	4.1	1
3	A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile <i>in vivo</i> and <i>in vitro</i> applications. RSC Chemical Biology, 2022, 3, 748-764.	4.1	3
4	Targeted In Vivo Loading of Red Blood Cells Markedly Prolongs Nanocarrier Circulation. Bioconjugate Chemistry, 2022, 33, 1286-1294.	3.6	13
5	Anchoring IgG-degrading enzymes to the surface of platelets selectively neutralizes antiplatelet antibodies. Blood Advances, 2022, 6, 4645-4656.	5.2	5
6	Site-Specific Modification of Single-Chain Affinity Ligands for Fluorescence Labeling, Radiolabeling, and Bioconjugation. Methods in Molecular Biology, 2021, 2355, 163-173.	0.9	2
7	Early Convalescent Plasma for High-Risk Outpatients with Covid-19. New England Journal of Medicine, 2021, 385, 1951-1960.	27.0	177
8	A hybridoma-derived monoclonal antibody with high homology to the aberrant myeloma light chain. PLoS ONE, 2021, 16, e0252558.	2.5	4
9	Shoulder Pseudodislocation Associated with Calcific Tendinitis/Bursitis and Diagnosed by Point of Care Ultrasound. Journal of Emergency Medicine, 2020, 58, 72-76.	0.7	0
10	Molecularly Engineered Nanobodies for Tunable Pharmacokinetics and Drug Delivery. Bioconjugate Chemistry, 2020, 31, 1144-1155.	3.6	20
11	Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3405-3414.	7.1	97
12	Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. Journal of Controlled Release, 2019, 301, 54-61.	9.9	36
13	The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulmonary Circulation, 2018, 8, 1-18.	1.7	12
14	Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9. Scientific Reports, 2018, 8, 1760.	3.3	32
15	Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjugate Chemistry, 2018, 29, 1209-1218.	3.6	32
16	Targeting therapeutics to endothelium: are we there yet?. Drug Delivery and Translational Research, 2018, 8, 883-902.	5.8	49
17	Site-Specific Modification of Single-Chain Antibody Fragments for Bioconjugation and Vascular Immunotargeting. Bioconjugate Chemistry, 2018, 29, 56-66.	3.6	26
18	Vascular Targeting of Radiolabeled Liposomes with Bio-Orthogonally Conjugated Ligands: Single Chain Fragments Provide Higher Specificity than Antibodies. Bioconjugate Chemistry, 2018, 29, 3626-3637.	3.6	38

COLIN F GREINEDER

#	Article	IF	CITATIONS
19	Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Advances, 2018, 2, 165-176.	5.2	42
20	Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. Advanced Materials, 2018, 30, e1802373.	21.0	73
21	Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1495-1506.	3.3	34
22	Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemiaâ€reperfusion injury. FASEB Journal, 2017, 31, 761-770.	0.5	27
23	ICAM-1–targeted thrombomodulin mitigates tissue factor–driven inflammatory thrombosis in a human endothelialized microfluidic model. Blood Advances, 2017, 1, 1452-1465.	5.2	26
24	Mechanism of Collaborative Enhancement of Binding of Paired Antibodies to Distinct Epitopes of Platelet Endothelial Cell Adhesion Molecule-1. PLoS ONE, 2017, 12, e0169537.	2.5	11
25	Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans. Journal of Controlled Release, 2016, 226, 229-237.	9.9	29
26	Vascular Accessibility of Endothelial Targeted Ferritin Nanoparticles. Bioconjugate Chemistry, 2016, 27, 628-637.	3.6	28
27	Simultaneous Replacement of Endothelial Thrombomodulin and Plasma Protein C: A Novel Therapeutic Strategy for Sepsis-Induced Disseminated Intravascular Coagulation. Blood, 2016, 128, 2613-2613.	1.4	0
28	Coupling Therapeutics to Human Erythrocytes Demonstrates Target-Dependent Effects on Red Cell Physiology While Preserving Efficacy. Blood, 2016, 128, 701-701.	1.4	0
29	Systems approaches to design of targeted therapeutic delivery. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 253-265.	6.6	7
30	Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS Nano, 2015, 9, 6785-6793.	14.6	22
31	Dual targeting of therapeutics to endothelial cells: collaborative enhancement of delivery and effect. FASEB Journal, 2015, 29, 3483-3492.	0.5	25
32	Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opinion on Drug Delivery, 2015, 12, 239-261.	5.0	41
33	A Microfluidic Model of Microvascular Inflammation: Characterization and Testing of Endothelial-Targeted Therapeutics. Blood, 2015, 126, 3454-3454.	1.4	1
34	Thrombomodulin Fusion Proteins Coupled to Human Erythrocytes Demonstrate Anti-Thrombotic and Anti-Inflammatory Activity. Blood, 2015, 126, 3493-3493.	1.4	0
35	Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials, 2014, 35, 3708-3715.	11.4	80
36	Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. Journal of Controlled Release, 2014, 177, 34-41.	9.9	86

COLIN F GREINEDER

#	Article	IF	CITATIONS
37	Targeting to Endothelial Cells Augments the Protective Effect of Novel Dual Bioactive Antioxidant/Anti-Inflammatory Nanoparticles. Molecular Pharmaceutics, 2014, 11, 2262-2270.	4.6	23
38	Reduction of Nanoparticle Avidity Enhances the Selectivity of Vascular Targeting and PET Detection of Pulmonary Inflammation. ACS Nano, 2013, 7, 2461-2469.	14.6	94
39	Platelet Endothelial Cell Adhesion Molecule Targeted Oxidant-Resistant Mutant Thrombomodulin Fusion Protein with Enhanced Potency In Vitro and In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 339-345.	2.5	19
40	Advanced drug delivery systems for antithrombotic agents. Blood, 2013, 122, 1565-1575.	1.4	78
41	Vascular Immunotargeting to Endothelial Determinant ICAM-1 Enables Optimal Partnering of Recombinant scFv-Thrombomodulin Fusion with Endogenous Cofactor. PLoS ONE, 2013, 8, e80110.	2.5	48
42	Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. Journal of Controlled Release, 2012, 163, 161-169.	9.9	71
43	Collaborative Enhancement of Antibody Binding to Distinct PECAM-1 Epitopes Modulates Endothelial Targeting. PLoS ONE, 2012, 7, e34958.	2.5	30
44	Heart Failure Associated with Sunitinib: Lessons Learned from Animal Models. Current Hypertension Reports, 2011, 13, 436-441.	3.5	27
45	In Vitro and In Silico Analysis of Annexin V Binding to Lymphocytes as a Biomarker in Emergency Department Sepsis Studies. Academic Emergency Medicine, 2007, 14, 763-771.	1.8	5
46	In Vitro and In Silico Analysis of Annexin V Binding to Lymphocytes as a Biomarker in Emergency Department Sepsis Studies. Academic Emergency Medicine, 2007, 14, 763-771.	1.8	10