Adeline Picot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2270121/publications.pdf

Version: 2024-02-01

19	663	13 h-index	19
papers	citations		g-index
20	20	20	862
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Influence of Maize Residues in Shaping Soil Microbiota and Fusarium spp. Communities. Microbial Ecology, 2022, 83, 702-713.	2.8	8
2	Microbiota Associated with Dromedary Camel Milk from Algerian Sahara. Current Microbiology, 2020, 77, 24-31.	2.2	14
3	Phylogenetic Diversity and Effect of Temperature on Pathogenicity of Colletotrichum lupini. Plant Disease, 2020, 104, 938-950.	1.4	18
4	Water Microbiota in Greenhouses With Soilless Cultures of Tomato by Metabarcoding and Culture-Dependent Approaches. Frontiers in Microbiology, 2020, 11, 1354.	3.5	3
5	A novel metabarcoding approach to investigate Fusarium species composition in soil and plant samples. FEMS Microbiology Ecology, 2019, 95, .	2.7	25
6	Co-occurrence analysis reveal that biotic and abiotic factors influence soil fungistasis against Fusarium graminearum. FEMS Microbiology Ecology, 2019, 95, .	2.7	15
7	Combined Metabarcoding and Co-occurrence Network Analysis to Profile the Bacterial, Fungal and Fusarium Communities and Their Interactions in Maize Stalks. Frontiers in Microbiology, 2019, 10, 261.	3.5	51
8	Atoxigenic <i>Aspergillus flavus</i> Isolates Endemic to Almond, Fig, and Pistachio Orchards in California with Potential to Reduce Aflatoxin Contamination in these Crops. Plant Disease, 2019, 103, 905-912.	1.4	33
9	Development of qPCR assays to monitor the ability of Gliocladium catenulatum J1446 to reduce the cereal pathogen Fusarium graminearum inoculum in soils. European Journal of Plant Pathology, 2018, 152, 285-295.	1.7	12
10	Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: A strategy for identifying potential antagonists, the example of almonds. International Journal of Food Microbiology, 2018, 265, 55-64.	4.7	18
11	Effect of tillage and static abiotic soil properties on microbial diversity. Applied Soil Ecology, 2018, 132, 135-145.	4.3	101
12	Period of susceptibility of almonds to aflatoxin contamination during development in the orchard. European Journal of Plant Pathology, 2017, 148, 521-531.	1.7	14
13	Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control, 2017, 113, 26-38.	3.0	88
14	Community Structure of <i>Aspergillus flavus</i> and <i>A. parasiticus</i> in Major Almond-Producing Areas of California, United States. Plant Disease, 2015, 99, 1161-1169.	1.4	19
15	Maize Kernel Antioxidants and Their Potential Involvement in Fusarium Ear Rot Resistance. Journal of Agricultural and Food Chemistry, 2013, 61, 3389-3395.	5.2	38
16	Chlorogenic Acid and Maize Ear Rot Resistance: A Dynamic Study Investigating <i>Fusarium graminearum</i> Development, Deoxynivalenol Production, and Phenolic Acid Accumulation. Molecular Plant-Microbe Interactions, 2012, 25, 1605-1616.	2.6	56
17	Interactions between <i>Fusarium verticillioides</i> and <i>Fusarium graminearum</i> in maize ears and consequences for fungal development and mycotoxin accumulation. Plant Pathology, 2012, 61, 140-151.	2.4	39
18	The Dent Stage of Maize Kernels Is the Most Conducive for Fumonisin Biosynthesis under Field Conditions. Applied and Environmental Microbiology, 2011, 77, 8382-8390.	3.1	31

ADELINE PICOT

#	Article	IF	CITATIONS
19	Factors of the <i>Fusarium verticillioides </i> Critical Reviews in Microbiology, 2010, 36, 221-231.	6.1	78