Yoshiaki Nishibayashi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2269815/yoshiaki-nishibayashi-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,945 107 71 294 h-index g-index citations papers 16,613 410 7.1 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
294	Hydroboration and Hydrosilylation of a Molybdenum N itride Complex Bearing a PNP-Type Pincer Ligand. <i>Organometallics</i> , 2022 , 41, 366-373	3.8	2
293	Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. <i>Chemistry - A European Journal</i> , 2021 , 27, 15562	4.8	
292	Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. <i>Chemistry - A European Journal</i> , 2021 , 27, 15650-15659	4.8	1
291	Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11231-11236	16.4	14
2 90	Ruthenium-Catalyzed Enantioselective Propargylic Phosphinylation of Propargylic Alcohols with Phosphine Oxides. <i>Angewandte Chemie</i> , 2021 , 133, 11331-11336	3.6	6
289	Synthesis and Characterization of Rhodium Complex Bearing Anionic CNC-Type Pincer Ligand with Pyrrolide and Imidazo[1,5-a]pyridin-3-ylidene Moieties. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 1408-1414	1.3	
288	Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13906-13	399 2	4
287	Ammonia Formation Catalyzed by a Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions**. <i>Angewandte Chemie</i> , 2021 , 133, 14025-14031	3.6	1
286	Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. <i>Chemical Communications</i> , 2021 , 57, 1176-1189	5.8	14
285	Development of catalytic nitrogen fixation using transition metal complexes not relevant to nitrogenases. <i>Tetrahedron</i> , 2021 , 83, 131986	2.4	4
284	Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. <i>Journal of Organic Chemistry</i> , 2021 , 86, 12577-12590	4.2	5
283	Manganese-Catalyzed Ammonia Oxidation into Dinitrogen under Chemical or Electrochemical Conditions*. <i>ChemPlusChem</i> , 2021 , 86, 1511-1516	2.8	2
282	Enantioselectivity in Ruthenium-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 3760-3766	4.5	O
281	Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. <i>Chemical Society Reviews</i> , 2021 , 50, 5201-5242	58.5	21
280	Iridium-catalyzed Formation of Silylamine from Dinitrogen under Ambient Reaction Conditions. <i>Chemistry Letters</i> , 2020 , 49, 794-797	1.7	5
279	Ruthenium-Catalyzed Propargylic Reduction of Propargylic Alcohols with Hantzsch Ester. Organometallics, 2020 , 39, 2130-2134	3.8	5
278	Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. <i>Chemistry - A European Journal</i> , 2020 , 26, 13383-1	3489	7

277	Electrochemical Reduction of Samarium Triiodide into Samarium Diiodide. <i>Chemistry Letters</i> , 2020 , 49, 1171-1173	1.7	4
276	EurJIC® Nitrogen Fixation Special Issue 🖪 Source of Inspiration. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1351-1352	2.3	1
275	Structural characterization of molybdenum-dinitrogen complex as key species toward ammonia formation by dispersive XAFS spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 12368-12372	3.6	5
274	Preparation and reactivity of molybdenum complexes bearing pyrrole-based PNP-type pincer ligand. <i>Chemical Communications</i> , 2020 , 56, 6933-6936	5.8	9
273	Nitrogen Fixation Catalyzed by Dinitrogen-Bridged Dimolybdenum Complexes Bearing PCP- and PNP-Type Pincer Ligands: A Shortcut Pathway Deduced from Free Energy Profiles. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1490-1498	2.3	11
272	Cycling between Molybdenum-Dinitrogen and -Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. <i>Chemistry - A European Journal</i> , 2020 , 26, 13321	4.8	
271	Rhodium-Catalyzed Cyclization Reactions of Thiadiazoles with Phosphaalkynes to Prepare 1,3-Thiaphospholes. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 3879-3882	3.2	5
270	Synthesis of 1,2,4-azadiphosphole derivatives based on vanadium-catalyzed [2+2+1] cycloaddition reactions of azobenzenes with phosphaalkynes <i>RSC Advances</i> , 2020 , 10, 12730-12733	3.7	4
269	Synthesis and Catalytic Reactivity of Polystyrene-supported Molybdenum Pincer Complexes toward Ammonia Formation. <i>Chemistry Letters</i> , 2019 , 48, 693-695	1.7	4
268	Catalytic Water Oxidation Reaction with Use of Triarylaminium Radicals as Single-electron Oxidants and Pyridines as Bases. <i>Chemistry Letters</i> , 2019 , 48, 1006-1008	1.7	
267	Effect of substituents on molybdenum triiodide complexes bearing PNP-type pincer ligands toward catalytic nitrogen fixation. <i>Dalton Transactions</i> , 2019 , 48, 3182-3186	4.3	22
266	Overviews of the Preparation and Reactivity of Transition Metal D initrogen Complexes 2019 , 1-77		5
265	Group 8 Transition Metal D initrogen Complexes 2019 , 285-335		5
264	Copper-catalysed enantioselective intramolecular etherification of propargylic esters: synthetic approach to chiral isochromans <i>RSC Advances</i> , 2019 , 9, 18918-18922	3.7	11
263	Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation. <i>Organometallics</i> , 2019 , 38, 2863-2872	3.8	10
262	Molybdenum-Catalyzed Ammonia Formation Using Simple Monodentate and Bidentate Phosphines as Auxiliary Ligands. <i>Inorganic Chemistry</i> , 2019 , 58, 8927-8932	5.1	32
261	Alkylation Reactions of Azodicarboxylate Esters with 4-Alkyl-1,4-Dihydropyridines under Catalyst-Free Conditions. <i>Organic Letters</i> , 2019 , 21, 4642-4645	6.2	13
260	Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. <i>Nature</i> , 2019 , 568, 536-540	50.4	181

259	Group 5 Transition Metal-Dinitrogen Complexes 2019 , 159-220		О
258	Group 6 Transition Metal D initrogen Complexes 2019 , 221-269		2
257	Recent advances in catalytic silylation of dinitrogen using transition metal complexes. <i>Coordination Chemistry Reviews</i> , 2019 , 389, 73-93	23.2	44
256	Catalytic Reactivity of Molybdenum-Trihalide Complexes Bearing PCP-Type Pincer Ligands. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2091-2096	4.5	16
255	Catalytic C-H Borylation Using Iron Complexes Bearing 4,5,6,7-Tetrahydroisoindol-2-ide-Based PNP-Type Pincer Ligand. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2097-2101	4.5	15
254	Group 9 Transition Metal D initrogen Complexes 2019 , 337-402		3
253	A Practical Synthesis of Ammonia from Nitrogen Gas, Samarium Diiodide and Water Catalyzed by a Molybdenum P CP Pincer Complex. <i>Synthesis</i> , 2019 , 51, 3792-3795	2.9	17
252	Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. <i>Nature Chemistry</i> , 2019 , 11, 702	-7,9%	36
251	Catalytic reduction of dinitrogen to tris(trimethylsilyl)amine using rhodium complexes with a pyrrole-based PNP-type pincer ligand. <i>Chemical Communications</i> , 2019 , 55, 14886-14889	5.8	19
250	Copper-Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3-Azaphospholes. <i>Angewandte Chemie</i> , 2019 , 131, 1180-1185	3.6	1
249	Recent advances in nitrogen fixation upon vanadium complexes. <i>Coordination Chemistry Reviews</i> , 2019 , 381, 135-150	23.2	25
248	Copper-Catalyzed [3+2] Cycloaddition Reactions of Isocyanoacetates with Phosphaalkynes to Prepare 1,3-Azaphospholes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1168-1173	16.4	9
247	Copper- and Borinic Acid-catalyzed Propargylic Etherification of Propargylic Carbonates with Benzyl Alcohols. <i>Chemistry Letters</i> , 2018 , 47, 671-673	1.7	12
246	Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes. <i>Angewandte Chemie</i> , 2018 , 130, 9202-9206	3.6	16
245	Catalytic Reduction of Molecular Dinitrogen to Ammonia and Hydrazine Using Vanadium Complexes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9064-9068	16.4	79
244	Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation. <i>Dalton Transactions</i> , 2018 , 47, 1117-1121	4.3	46
243	Mechanism and reactivity of catalytic propargylic substitution reactions via metallllenylidene intermediates: a theoretical perspective. <i>Catalysis Science and Technology</i> , 2018 , 8, 12-25	5.5	63
242	Hydrogenation of Carbon Dioxide with Organic Base by PCIIP-Ir Catalysts. <i>Organometallics</i> , 2018 , 37, 3001-3009	3.8	22

241	Development of catalytic nitrogen fixation using transition metal-dinitrogen complexes under mild reaction conditions. <i>Dalton Transactions</i> , 2018 , 47, 11290-11297	4.3	67
240	Synthesis and reactivity of titanium- and zirconium-dinitrogen complexes bearing anionic pyrrole-based PNP-type pincer ligands. <i>Dalton Transactions</i> , 2018 , 47, 11322-11326	4.3	18
239	Practical Synthesis of a PCP-Type Pincer Ligand and Its Metal Complexes Synthesis, 2018 , 50, 1015-1019	9 2.9	13
238	Phosphine Oxidation with Water and Ferrocenium(III) Cation induced by Visible-Light Irradiation. <i>Chemistry - A European Journal</i> , 2018 , 24, 18567-18567	4.8	
237	Phosphine Oxidation with Water and Ferrocenium(III) Cation Induced by Visible-Light Irradiation. <i>Chemistry - A European Journal</i> , 2018 , 24, 18618-18622	4.8	4
236	Cross-Coupling Reactions of Alkenyl Halides with 4-Benzyl-1,4- Dihydropyridines Associated with E to Z Isomerization under Nickel and Photoredox Catalysis. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3653-3	6 57	23
235	Development of Catalytic Nitrogen Fixation Using Transition Metal Dinitrogen Complexes. <i>Bulletin of Japan Society of Coordination Chemistry</i> , 2018 , 71, 49-55	0.3	
234	Synthesis of Ruthenium Complexes Bearing PCP-Type Pincer Ligands and Their Application to Direct Synthesis of Imines from Amines and Benzyl Alcohol. <i>Organometallics</i> , 2018 , 37, 3086-3092	3.8	23
233	Vanadium-catalyzed Reduction of Molecular Dinitrogen into Silylamine under Ambient Reaction Conditions. <i>Chemistry Letters</i> , 2017 , 46, 466-468	1.7	46
232	Synthesis and Reactivity of Iron and Cobalt Dinitrogen Complexes Bearing PSiP-Type Pincer Ligands toward Nitrogen Fixation. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 3769-3778	2.3	61
231	Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. <i>Nature Communications</i> , 2017 , 8, 14874	17.4	153
230	Catalytic Nitrogen Fixation Using Molybdenum D initrogen Complexes as Catalysts. <i>Topics in Organometallic Chemistry</i> , 2017 , 153-169	0.6	12
229	Catalytic Transformations of Molecular Dinitrogen by Iron and CobaltDinitrogen Complexes as Catalysts. <i>Topics in Organometallic Chemistry</i> , 2017 , 215-234	0.6	13
228	Synthesis and reactivity of iron-dinitrogen complexes bearing anionic methyl- and phenyl-substituted pyrrole-based PNP-type pincer ligands toward catalytic nitrogen fixation. <i>Chemical Communications</i> , 2017 , 53, 12040-12043	5.8	51
227	Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 1111	-5 ₁ 118	111
226	Synthesis and Reactivity of Iron and Cobalt Dinitrogen Complexes Bearing PSiP-Type Pincer Ligands toward Nitrogen Fixation. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 3768-3768	2.3	2
225	Hydroboration of Alkynes Catalyzed by Pyrrolide-Based PNP Pincer-Iron Complexes. <i>Organic Letters</i> , 2017 , 19, 4323-4326	6.2	71
224	Catalytic Conversion of Dinitrogen into Ammonia under Ambient Reaction Conditions by Using Proton Source from Water. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2544-2548	4.5	22

223	Dicationic Thiolate-Bridged Diruthenium Complexes for Catalytic Oxidation of Molecular Dihydrogen. <i>Organometallics</i> , 2017 , 36, 4499-4506	3.8	6
222	Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen. <i>Chemistry - A European Journal</i> , 2017 , 23, 1007-1012	4.8	6
221	Development of Asymmetric Propargylic Substitution Reactions. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2017 , 75, 2-13	0.2	1
220	Azaferrocene-Based PNP-Type Pincer Ligand: Synthesis of Molybdenum, Chromium, and Iron Complexes and Reactivity toward Nitrogen Fixation. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 4856-4861	2.3	35
219	Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14291-14295	16.4	152
218	Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. <i>Nature Communications</i> , 2016 , 7, 12181	17.4	205
217	Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. <i>Angewandte Chemie</i> , 2016 , 128, 14503-14507	3.6	48
216	Innentitelbild: Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands (Angew. Chem. 46/2016). <i>Angewandte Chemie</i> , 2016 , 128, 14388-14388	3.6	
215	Visible-Light-Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-dihydropyridines through Double CarbonCarbon Bond Cleavage. <i>ChemCatChem</i> , 2016 , 8, 1028-1032	5.2	85
214	Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. <i>Chemical Record</i> , 2016 , 16, 1549-77	6.6	76
213	Construction of Chiral Tri- and Tetra-Arylmethanes Bearing Quaternary Carbon Centers: Copper-Catalyzed Enantioselective Propargylation of Indoles with Propargylic Esters. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9728-32	16.4	102
212	Visible-Light-Mediated Aromatic Substitution Reactions of Cyanoarenes with 4-Alkyl-1,4-dihydropyridines through Double Carbon@arbon Bond Cleavage. <i>ChemCatChem</i> , 2016 , 8, 1015-1015	5.2	
211	Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. <i>Accounts of Chemical Research</i> , 2016 , 49, 987-95	24.3	164
210	Construction of Chiral Tri- and Tetra-Arylmethanes Bearing Quaternary Carbon Centers: Copper-Catalyzed Enantioselective Propargylation of Indoles with Propargylic Esters. <i>Angewandte Chemie</i> , 2016 , 128, 9880-9884	3.6	28
209	Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Formal Nucleophilic Alkylation Reagents. <i>Angewandte Chemie</i> , 2016 , 128, 14312-14316	3.6	37
208	Nickel- and Photoredox-Catalyzed Cross-Coupling Reactions of Aryl Halides with 4-Alkyl-1,4-dihydropyridines as Formal Nucleophilic Alkylation Reagents. <i>Angewandte Chemie -</i> International Edition, 2016 , 55, 14106-14110	16.4	127
207	Iron-Catalyzed [2 + 2 + 2] Cycloaddition Reactions of Diynes with Oxyphosphaethynes To Construct 2-Phosphaphenol Derivatives. <i>Organic Letters</i> , 2016 , 18, 5006-5009	6.2	25
206	Synthetic Utilization of EAminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis. <i>Accounts of Chemical Research</i> , 2016 , 49, 1946-56	24.3	254

205	Synthesis and Catalytic Activity of Molybdenum Nitride Complexes Bearing Pincer Ligands. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 1789-1794	2.3	29	
204	Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions. <i>Inorganic Chemistry</i> , 2015 , 54, 9234-47	5.1	181	
203	Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum-dinitrogen complexes: unique behavior of ferrocene moiety as redox active site. <i>Chemical Science</i> , 2015 , 6, 3940-3	9 91 4	88	
202	Catalytic reduction of dinitrogen to ammonia by use of molybdenum-nitride complexes bearing a tridentate triphosphine as catalysts. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5666-9	16.4	193	
201	Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4173-82	16.4	17	
200	Cobalt-catalyzed transformation of molecular dinitrogen into silylamine under ambient reaction conditions. <i>Chemistry - A European Journal</i> , 2015 , 21, 8905-9	4.8	72	
199	Synthesis and Reactivity of Molybdenum-Dinitrogen Complexes Bearing PNN-Type Pincer Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015 , 641, 100-104	1.3	21	
198	Molybdenum-catalyzed reduction of molecular dinitrogen into ammonia under ambient reaction conditions. <i>Comptes Rendus Chimie</i> , 2015 , 18, 776-784	2.7	17	
197	Radical Addition to Corannulene Mediated by Visible-light-photoredox Catalysts. <i>Chemistry Letters</i> , 2015 , 44, 545-547	1.7	18	
196	Synthesis of phosphabenzenes by an iron-catalyzed [2+2+2] cycloaddition reaction of diynes with phosphaalkynes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7597-601	16.4	24	
195	Synthesis of Phosphabenzenes by an Iron-Catalyzed [2+2+2] Cycloaddition Reaction of Diynes with Phosphaalkynes. <i>Angewandte Chemie</i> , 2015 , 127, 7707-7711	3.6	8	
194	Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. Journal of the American Chemical Society, 2015, 137, 2472-5	16.4	117	
193	Cooperative catalysis: enantioselective propargylic alkylation of propargylic alcohols with enecarbamates using ruthenium/phosphoramide hybrid catalysts. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4060-4	16.4	44	
192	Cooperative Catalysis: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Enecarbamates Using Ruthenium/Phosphoramide Hybrid Catalysts. <i>Angewandte Chemie</i> , 2015 , 127, 41.	3 <i>2</i> -413	6 ¹⁴	
191	Visible-light-mediated addition of ⊞minoalkyl radicals to [60]fullerene by using photoredox catalysts. <i>Chemistry - A European Journal</i> , 2014 , 20, 6120-5	4.8	56	
190	Enantioselective intramolecular propargylic amination using chiral copper-pybox complexes as catalysts. <i>Chemical Communications</i> , 2014 , 50, 7874-7	5.8	55	
189	Synthesis of nitrogen heterocycles via the minoalkyl radicals generated from tilyl secondary amines under visible light irradiation. <i>Chemical Communications</i> , 2014 , 50, 8900-3	5.8	46	
188	Synthesis and Reactivity of Ruthenium Complexes Bearing Arsenic-Containing Arsenic-Nitrogen-Arsenic-Type Pincer Ligand. <i>Organometallics</i> , 2014 , 33, 5295-5300	3.8	18	

187	Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9719-31	16.4	165
186	Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia. <i>Nature Communications</i> , 2014 , 5, 3737	17.4	131
185	Cleavage and Formation of Molecular Dinitrogen in a Single System Assisted by Molybdenum Complexes Bearing Ferrocenyldiphosphine. <i>Angewandte Chemie</i> , 2014 , 126, 11672-11676	3.6	37
184	Copper-catalyzed nucleophilic trifluoromethylation of benzylic chlorides. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 5594-6	3.9	24
183	Synthesis and Redox Properties of PNP Pincer Complexes Based on N-Methyl-4,4?-bipyridinium. European Journal of Inorganic Chemistry, 2014 , 2014, 4273-4280	2.3	9
182	Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11488-	9 ^{26.4}	89
181	Recent Progress in Catalytic Nitrogen Fixation by Using Transition Metal-Dinitrogen Complexes. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2014 , 72, 529-537	0.2	1
180	Preparation and reactivity of molybdenum-dinitrogen complexes bearing an arsenic-containing ANA-type pincer ligand. <i>Chemical Communications</i> , 2013 , 49, 9290-2	5.8	34
179	Copper-catalyzed nucleophilic trifluoromethylation of propargylic halides. <i>Chemical Communications</i> , 2013 , 49, 7809-11	5.8	45
	, , ,		
178	Cycloaromatization via Transition Metal©umulenylidenes 2013 , 549-569		3
178 177		5.8	3 89
•	Cycloaromatization via Transition Metal©umulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to	5.8	
177	Cycloaromatization via Transition Metal@umulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to electron-deficient alkenes by using photoredox catalysts. <i>Chemical Communications</i> , 2013, 49, 7854-6 Design and preparation of molybdenum-dinitrogen complexes with ferrocenyldiphosphine and pentamethylcyclopentadienyl moieties as auxiliary ligands. <i>Chemistry - A European Journal</i> , 2013,		89
177 176	Cycloaromatization via Transition Metaltumulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to electron-deficient alkenes by using photoredox catalysts. <i>Chemical Communications</i> , 2013, 49, 7854-6 Design and preparation of molybdenum-dinitrogen complexes with ferrocenyldiphosphine and pentamethylcyclopentadienyl moieties as auxiliary ligands. <i>Chemistry - A European Journal</i> , 2013, 19, 11874-7 Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex. <i>Chemical</i>	4.8	89 34 26
177 176	Cycloaromatization via Transition Metal@umulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to electron-deficient alkenes by using photoredox catalysts. Chemical Communications, 2013, 49, 7854-6 Design and preparation of molybdenum-dinitrogen complexes with ferrocenyldiphosphine and pentamethylcyclopentadienyl moieties as auxiliary ligands. Chemistry - A European Journal, 2013, 19, 11874-7 Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex. Chemical Communications, 2013, 49, 11215-7 Ruthenium-triggered ring opening of ethynylcyclopropanes: [3+2] cycloaddition with aldehydes and aldimines involving metal allenylidene intermediates. Angewandte Chemie - International	4.8	89 34 26
177 176 175	Cycloaromatization via Transition Metal©umulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to electron-deficient alkenes by using photoredox catalysts. Chemical Communications, 2013, 49, 7854-6 Design and preparation of molybdenum-dinitrogen complexes with ferrocenyldiphosphine and pentamethylcyclopentadienyl moieties as auxiliary ligands. Chemistry - A European Journal, 2013, 19, 11874-7 Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex. Chemical Communications, 2013, 49, 11215-7 Ruthenium-triggered ring opening of ethynylcyclopropanes: [3+2] cycloaddition with aldehydes and aldimines involving metal allenylidene intermediates. Angewandte Chemie - International Edition, 2013, 52, 1758-62 Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews,	4.8 5.8 16.4	89 34 26 58
177 176 175 174	Cycloaromatization via Transition Metal@umulenylidenes 2013, 549-569 Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: addition to electron-deficient alkenes by using photoredox catalysts. Chemical Communications, 2013, 49, 7854-6 Design and preparation of molybdenum-dinitrogen complexes with ferrocenyldiphosphine and pentamethylcyclopentadienyl moieties as auxiliary ligands. Chemistry - A European Journal, 2013, 19, 11874-7 Preparation and reactivity of a dinitrogen-bridged dimolybdenum-tetrachloride complex. Chemical Communications, 2013, 49, 11215-7 Ruthenium-triggered ring opening of ethynylcyclopropanes: [3+2] cycloaddition with aldehydes and aldimines involving metal allenylidene intermediates. Angewandte Chemie - International Edition, 2013, 52, 1758-62 Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews, 2013, 257, 2551-2564 Synthesis, Structure, and Reactivity of Group VI Metal Complexes Bearing Group IV Metallocenyldiphosphine Moieties and a Pentamethylcyclopentadienyl Ligand. Organometallics,	4.8 5.8 16.4 23.2	89342658255

(2011-2012)

Synthesis and Catalytic Activity of MolybdenumDinitrogen Complexes Bearing Unsymmetric PNP-Type Pincer Ligands. <i>Organometallics</i> , 2012 , 31, 8437-8443	3.8	95
Direct sp3 C-H amination of nitrogen-containing benzoheterocycles mediated by visible-light-photoredox catalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 16473-7	4.8	90
Visible-light-mediated addition of ⊞minoalkyl radicals generated from ⊞ilylamines to ⊞unsaturated carbonyl compounds. <i>Chemical Communications</i> , 2012 , 48, 6966-8	5.8	109
Cooperative Catalytic Reactions Using Organocatalysts and Transition Metal Catalysts: Propargylic Allylation of Propargylic Alcohols with #Unsaturated Aldehydes. <i>Organometallics</i> , 2012 , 31, 3810-3813	3.8	43
Synthesis and Reactivity of Hybrid Phosphido- and Hydrosulfido-Bridged Diruthenium Complexes: Transformations into Diruthenium and Tetraruthenium Complexes Bridged by Phosphido and Sulfido Ligands. <i>Organometallics</i> , 2012 , 31, 3292-3299	3.8	8
Copper-catalyzed nucleophilic trifluoromethylation of allylic halides: a simple approach to allylic trifluoromethylation. <i>Chemistry - A European Journal</i> , 2012 , 18, 13255-8	4.8	59
Enantioselective alkylation of Eketo phosphonates by direct use of diaryl methanols as electrophiles. <i>Chemical Communications</i> , 2012 , 48, 9528-30	5.8	26
Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nature Communications, 2012, 3, 1254	17.4	109
Ruthenium- and Copper-Catalyzed Enantioselective Propargylic Alkylation of Propargylic Alcohols with EKeto Phosphonates. <i>Organometallics</i> , 2012 , 31, 3426-3430	3.8	40
Synthesis of Sulfur- and Nitrogen-Bridged Diiron Complexes and Catalytic Behavior toward Hydrazines. <i>Organometallics</i> , 2012 , 31, 2953-2956	3.8	31
Visible-light-mediated utilization of Haminoalkyl radicals: addition to electron-deficient alkenes using photoredox catalysts. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3338-41	16.4	315
Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. <i>Dalton Transactions</i> , 2012 , 41, 7447-53	4.3	59
Synthesis and Protonation of Molybdenumland Tungsten Dinitrogen Complexes Bearing PNP-Type Pincer Ligands. <i>Organometallics</i> , 2012 , 31, 2035-2041	3.8	65
Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles. <i>Synthesis</i> , 2012 , 2012, 489-503	2.9	173
Cooperative catalytic reactions using organocatalysts and transition metal catalysts: enantioselective propargylic alkylation of propargylic esters with aldehydes. <i>Organic Letters</i> , 2011 , 13, 592-5	6.2	81
Selenoxide Elimination and [2,3]-Sigmatropic Rearrangement 2011 , 287-320		1
A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. <i>Nature Chemistry</i> , 2011 , 3, 120-5	17.6	547
Propargylic Substitution Reaction Catalyzed by Group IV (Ti, Zr, Hf)Ru Heterobimetallic	3.8	17
	Direct sp3 C-H amination of nitrogen-containing benzoheterocycles mediated by visible-light-photoredox catalysts. <i>Chemistry - A European Journal</i> , 2012, 18, 16473-7 Visible-light-mediated addition of Eminoalkyl radicals generated from Bilylamines to Elunsaturated carbonyl compounds. <i>Chemical Communications</i> , 2012, 48, 6966-8 Cooperative Catalytic Reactions Using Organocatalysts and Transition Metal Catalysts: Propargylic Allylation of Propargylic Alcohols with Elunsaturated Aldehydes. <i>Organometallics</i> , 2012, 31, 3810-3813 Synthesis and Reactivity of Hybrid Phosphido- and Hydrosulfido-Bridged Diruthenium Complexes: Transformations into Diruthenium and Tetraruthenium Complexes Bridged by Phosphido and Sulfido Ligands. <i>Organometallics</i> , 2012, 31, 3259-3299 Copper-catalyzed nucleophilic trifluoromethylation of allylic halides: a simple approach to allylic trifluoromethylation. <i>Chemistry - A European Journal</i> , 2012, 18, 13255-8 Enantioselective alkylation of Reto phosphonates by direct use of diaryl methanols as electrophiles. <i>Chemical Communications</i> , 2012, 48, 9528-30 Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. <i>Nature Communications</i> , 2012, 3, 1254 Ruthenium- and Copper-Catalyzed Enantioselective Propargylic Alkylation of Propargylic Alcohols with Beto Phosphonates. <i>Organometallics</i> , 2012, 31, 3426-3430 Synthesis of Sulfur- and Nitrogen-Bridged Diiron Complexes and Catalytic Behavior toward Hydrazines. <i>Organometallics</i> , 2012, 31, 2953-2956 Visible-light-mediated utilization of Faminoalkyl radicals: addition to electron-deficient alkenes using photoredox catalysts. <i>Journal of the American Chemical Society</i> , 2012, 134, 3338-41 Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. <i>Dalton Transactions</i> , 2012, 41, 7447-53 Synthesis and Protonation of MolybdenumBand TungstenDinitrogen Complexes Bearing PNP-Type Pincer Ligands. <i>Organometallics</i> , 2012, 31, 2035-2041 Transition-Metal-Catalyzed Enantioselective Propa	Direct sp3 C-H amination of nitrogen-containing benzoheterocycles mediated by visible-light-photoredox catalysts. Chemistry - A European Journal, 2012, 18, 16473-7 48 Visible-light-photoredox catalysts. Chemistry - A European Journal, 2012, 18, 16473-7 48 Visible-light-photoredox catalysts. Chemistry - A European Journal, 2012, 18, 16473-7 Synthesis and Reactivity of Hybrid Phosphido- and Hydrosulfido-Bridged Diruthenium Complexes: Allylation of Propargylic Alcohols with #Unsaturated Adehydes. Organetallics, 2012, 31, 3810-3813 Synthesis and Reactivity of Hybrid Phosphido- and Hydrosulfido-Bridged Diruthenium Complexes: Transformations into Diruthenium and Tetraruthenium Complexes Bridged by Phosphido and Sulfido Ligands. Organometallics, 2012, 31, 3292-3299 Copper-catalyzed nucleophilic trifluoromethylation of allylic halides: a simple approach to allylic trifluoromethylation. Chemistry - A European Journal, 2012, 18, 13255-8 Enantioselective alkylation of Eketo phosphonates by direct use of diaryl methanols as electrophiles. Chemical Communications, 2012, 48, 9528-30 Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions. Nature Communications, 2012, 31, 1254 Ruthenium- and Copper-Catalyzed Enantioselective Propargylic Alkylation of Propargylic Alcohols with Eketo Phosphonates. Organometallics, 2012, 31, 3426-3430 Synthesis of Sulfur- and Nitrogen-Bridged Diron Complexes and Catalytic Behavior toward Hydrazines. Organometallics, 2012, 31, 2953-2956 Visible-light-mediated utilization of Fiminoalkyl radicals: addition to electron-deficient alkenes using photoredox catalysts. Journal of the American Chemical Society, 2012, 134, 3338-41 Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. Dalton Transactions, 2012, 41, 7447-53 Synthesis and Protonation of Molybdenumland TungstenDinitrogen Complexes Bearing PNP-Type Pincer Ligands. Organometallics, 2012, 31, 2035-2041 Transition-Metal-Catalyzed Enantioselective Propargylic Sub

151	Cooperative Catalytic Reactions Using Lewis Acids and Organocatalysts: Enantioselective Propargylic Alkylation of Propargylic Alcohols Bearing an Internal Alkyne with Aldehydes. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 2239-2246	3.2	58
150	Remarkable Effect of Valence Electrons in Thiolato-Bridged Diruthenium Complexes toward Catalytic Dimerization of EMethylstyrenes. <i>Organometallics</i> , 2011 , 30, 5972-5977	3.8	6
149	Copper-catalyzed enantioselective propargylic amination of nonaromatic propargylic esters with amines. <i>Organic Letters</i> , 2011 , 13, 2460-3	6.2	61
148	Synthesis of Group IV (Zr, Hf)©roup VIII (Fe, Ru) Heterobimetallic Complexes Bearing Metallocenyl Diphosphine Moieties and Their Application to Catalytic Dehydrogenation of AmineBoranes. Organometallics, 2011, 30, 2394-2404	3.8	45
147	Molybdenum-catalyzed transformation of molecular dinitrogen into silylamine: experimental and DFT study on the remarkable role of ferrocenyldiphosphine ligands. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3498-506	16.4	130
146	Recent Progress in Catalytic Reactions via Copper-Acetylide Complexes as Key Intermediates. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2011 , 69, 1086-1098	0.2	3
145	Intramolecular Edge-to-Face Aromatic Interaction in Optically Active Ruthenium Allenylidene Complexes for Enantioselective Propargylic Substitution Reactions. <i>Organometallics</i> , 2010 , 29, 2381-238	8 4 ⁸	38
144	Preparation and Reactivity of a Ruthenium Complex Bearing a 2,6-Bis(trimethylsilyl)benzenethiolate Ligand. <i>Organometallics</i> , 2010 , 29, 4148-4153	3.8	4
143	Preparation of Thiolate-Bridged Dinuclear Ruthenium Complexes Bearing a Phosphine Ligand and Application to Propargylic Reduction of Propargylic Alcohols with 2-Propanol. <i>Organometallics</i> , 2010 , 29, 5994-6001	3.8	28
142	Ruthenium-Catalyzed Enantioselective [3+3] Cycloaddition of Propargylic Alcohols with 2-Naphthols. <i>Organometallics</i> , 2010 , 29, 2126-2131	3.8	56
141	Copper-catalyzed enantioselective propargylic amination of propargylic esters with amines: copper-allenylidene complexes as key intermediates. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10592-608	16.4	166
140	Copper-Catalyzed Diastereo- and Enantioselective Sequential Reactions of Propargylic Acetates with (E)-2,4-Pentadienylamine. <i>ChemCatChem</i> , 2010 , 2, 155-158	5.2	54
139	Asymmetric Synthesis of Epoxides from Aromatic Aldehydes and Benzyl Halides Catalyzed by C2 Symmetric Optically Active Sulfides Having a Binaphthyl Skeleton <i>ChemInform</i> , 2010 , 33, 105-105		
138	Cooperative Catalytic Reactions Using Organocatalysts and Transition-Metal Catalysts: Enantioselective Propargylic Alkylation of Propargylic Alcohols with Aldehydes. <i>Angewandte Chemie</i> , 2010 , 122, 7447-7451	3.6	48
137	Cooperative catalytic reactions using organocatalysts and transition-metal catalysts: enantioselective propargylic alkylation of propargylic alcohols with aldehydes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7289-93	16.4	131
136	Catalytic Cycloisomerization of 1,5-Enynes to 1,3-Cyclohexadienes via Ruthenium Vinylidene Intermediates. <i>Angewandte Chemie</i> , 2009 , 121, 2572-2575	3.6	3
135	Catalytic cycloisomerization of 1,5-enynes to 1,3-cyclohexadienes via ruthenium vinylidene intermediates. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2534-7	16.4	27
134	A DFT study on the reaction pathways for carbon-carbon bond-forming reactions between propargylic alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 81-8	4.5	31

133	Catalytic Propargylic Substitution Reactions. <i>ChemCatChem</i> , 2009 , 1, 342-356	5.2	180
132	Synthesis and Protonolysis of Tungstenland Molybdenum Dinitrogen Complexes Bearing Ruthenocenyldiphosphines. <i>Organometallics</i> , 2009 , 28, 4741-4746	3.8	32
131	Remarkable Effect of Halogens on Catalytic Activities of Thiolato-Bridged Diruthenium Complexes in Propargylic Substitution Reactions. <i>Organometallics</i> , 2009 , 28, 1138-1142	3.8	23
130	Preparation and Protonation of Tungsten- and Molybdenum-Dinitrogen Complexes Bearing Bis(dialkylphosphinobenzene)chromiums as Auxiliary Ligands. <i>Organometallics</i> , 2009 , 28, 5821-5827	3.8	34
129	Enantioselective ring-opening reactions of racemic ethynyl epoxides via copper-allenylidene intermediates: efficient approach to chiral beta-amino alcohols. <i>Journal of Organic Chemistry</i> , 2009 , 74, 7603-7	4.2	90
128	Ruthenium-Catalyzed Oxypropargylation of Alkenes. <i>Organometallics</i> , 2009 , 28, 48-50	3.8	31
127	Ruthenium-Catalyzed Enantioselective Intramolecular Propargylation of Thiophenes with Propargylic Alcohols. <i>Organometallics</i> , 2009 , 28, 2920-2926	3.8	47
126	Design and Synthesis of Diphosphine Ligands Bearing an Osmium(II) Bis(terpyridyl) Moiety as a Light-Harvesting Unit: Application to Photocatalytic Production of Dihydrogen. <i>Organometallics</i> , 2009 , 28, 5240-5243	3.8	40
125	Development of Novel Catalytic Reactions via Ruthenium-Allenylidene Complexes as Key Intermediates. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2009 , 67, 437-450	0.2	3
124	Ruthenium-Catalyzed Dienyne Formation from Propargylic Alcohols and 1,3-Conjugated Dienes. <i>Organometallics</i> , 2008 , 27, 2046-2051	3.8	38
123	Ruthenium-catalyzed vinylic substitution reactions with nucleophiles via butatrienylidene intermediates. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2908-9	16.4	26
122	Novel Monophosphido-Bridged Diruthenium Complexes: Efficient Preparative Method and Catalytic Activity toward Reactions of Propargylic Alcohols with Aromatic Compounds. Organometallics, 2008, 27, 4017-4020	3.8	23
121	Synthesis and Reactivity of Hybrid Phosphido- and Thiolato-Bridged Diruthenium Complexes. <i>Organometallics</i> , 2008 , 27, 6039-6042	3.8	26
120	Ruthenium-catalyzed enantioselective carbon-carbon bond forming reaction via allenylidene-ene process: synthetic approach to chiral heterocycles such as chromane, thiochromane, and 1,2,3,4-tetrahydroquinoline derivatives. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10498-9	16.4	134
119	Synthesis and Reactivity of Tungsten and Molybdenum Dinitrogen Complexes Bearing Ferrocenyldiphosphines toward Protonolysis. <i>Organometallics</i> , 2008 , 27, 3947-3953	3.8	45
118	Ruthenium-Catalyzed Intramolecular Cyclization of 3-Butyne-1,2-diols into Furans. <i>Organometallics</i> , 2008 , 27, 3614-3617	3.8	53
117	Synthesis of Optically Active N,N,N?,N?-Tetraphenyl-1,1?-binaphthyl-2,2?-diamine Derivatives as Analogues of BINAP. <i>Organometallics</i> , 2008 , 27, 4021-4024	3.8	5
116	Optically Active Chiral Ligands, Ferrocenyloxazolinylphosphines (FOXAPs): Development and Application to Catalytic Asymmetric Reactions. <i>Synlett</i> , 2008 , 2008, 1747-1758	2.2	2

115	Ruthenium-Catalyzed Enantioselective Propargylation of Indoles with Propargylic Alcohols. <i>Synthesis</i> , 2008 , 2008, 3869-3873	2.9	6
114	Copper-catalyzed asymmetric propargylic substitution reactions of propargylic acetates with amines. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3781-3	16.4	160
113	Copper-Catalyzed Asymmetric Propargylic Substitution Reactions of Propargylic Acetates with Amines. <i>Angewandte Chemie</i> , 2008 , 120, 3841-3843	3.6	56
112	Design and preparation of a chiral ligand based on a pseudorotaxane skeleton: application to rhodium-catalyzed enantioselective hydrogenation of enamides. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12930-1	16.4	76
111	Synthesis and Reactivity of Diphosphine-Bridged Diruthenium Complexes. <i>Organometallics</i> , 2007 , 26, 3611-3613	3.8	16
110	Ruthenium-catalyzed reactions of 1-cyclopropyl-2-propyn-1-ols with anilines and water via allenylidene intermediates: selective preparation of tri- and tetrasubstituted conjugated enynes. Journal of the American Chemical Society, 2007, 129, 5175-9	16.4	64
109	Development of Optically Active Chiral Ligands Ferrocenyloxazolinylphosphines (FOXAP) and Their Application to Catalytic Asymmetric Reactions. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2007 , 65, 761-771	0.2	3
108	Ruthenium-catalyzed enantioselective propargylation of aromatic compounds with propargylic alcohols via allenylidene intermediates. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6488-91	16.4	143
107	Ruthenium-Catalyzed Enantioselective Propargylation of Aromatic Compounds with Propargylic Alcohols via Allenylidene Intermediates. <i>Angewandte Chemie</i> , 2007 , 119, 6608-6611	3.6	58
106	Ruthenium-catalyzed sequential reactions: deracemization of secondary benzylic alcohols. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 393-6	4.5	36
105	Remarkable effect of N-substituent on enantioselective ruthenium-catalyzed propargylation of indoles with propargylic alcohols. <i>Organic Letters</i> , 2007 , 9, 5561-4	6.2	109
104	Ir- and Ru-catalyzed sequential reactions: asymmetric alpha-alkylative reduction of ketones with alcohols. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3819-22	16.4	131
103	Ruthenium-catalyzed propargylic reduction of propargylic alcohols with silanes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4835-9	16.4	90
102	Ruthenium-Catalyzed Propargylation of Aromatic Compounds with Propargylic Alcohols. <i>European Journal of Organic Chemistry</i> , 2006 , 2006, 881-890	3.2	71
101	Ir- and Ru-Catalyzed Sequential Reactions: Asymmetric 🖽 lkylative Reduction of Ketones with Alcohols. <i>Angewandte Chemie</i> , 2006 , 118, 3903-3906	3.6	39
100	Ruthenium-Catalyzed Propargylic Reduction of Propargylic Alcohols with Silanes. <i>Angewandte Chemie</i> , 2006 , 118, 4953-4957	3.6	28
99	Ruthenium-Catalyzed Novel Carbon-Carbon Bond Forming Reactions via Ruthenium-Allenylidene Complexes. <i>Current Organic Chemistry</i> , 2006 , 10, 135-150	1.7	69
98	Ruthenium-Catalyzed Reductive Coupling Reaction of Propargylic Alcohols via Hydroboration of Allenylidene Intermediates. <i>Organometallics</i> , 2006 , 25, 35-37	3.8	36

(2004-2005)

97	diruthenium complex. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9428-38	16.4	95
96	Ruthenium-catalyzed formation of aryl(diphenyl)phosphine oxides by reactions of propargylic alcohols with diphenylphosphine oxide. <i>Organic Letters</i> , 2005 , 7, 4029-32	6.2	32
95	Preparation of Dicationic Chalcogenolate-Bridged Diruthenium Complexes and Their Dual Catalytic Activity toward Reactions between Propargylic Alcohols and Acetone. <i>Organometallics</i> , 2005 , 24, 5799	-5 8 01	39
94	Novel Method for the Preparation of Enantiomerically Pure Propargylic Substituted Compounds. <i>Organometallics</i> , 2005 , 24, 4106-4109	3.8	27
93	Asymmetric carboselenenylation reaction of alkenes with aromatic compounds. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3588-91	16.4	59
92	Ruthenium-catalyzed asymmetric propargylic substitution reactions of propargylic alcohols with acetone. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7715-7	16.4	123
91	Asymmetric Carboselenenylation Reaction of Alkenes with Aromatic Compounds. <i>Angewandte Chemie</i> , 2005 , 117, 3654-3657	3.6	17
90	Ruthenium-Catalyzed Asymmetric Propargylic Substitution Reactions of Propargylic Alcohols with Acetone. <i>Angewandte Chemie</i> , 2005 , 117, 7893-7895	3.6	54
89	Titelbild: Ruthenium-Catalyzed Asymmetric Propargylic Substitution Reactions of Propargylic Alcohols with Acetone (Angew. Chem. 47/2005). <i>Angewandte Chemie</i> , 2005 , 117, 7823-7823	3.6	2
88	Ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with oxygen-, nitrogen-, and phosphorus-centered nucleophiles. <i>Chemistry - A European Journal</i> , 2005 , 11, 1433-51	4.8	156
	- maragen fana phosphoras centered nacteophics. Chemistry - A European Southat, 2003, 11, 1455-51		J
87	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005 , 39-40	<u>'</u>	
8 ₇			106
,	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005 , 39-40		106
86	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005 , 39-40 Buckminsterfullerenes: a non-metal system for nitrogen fixation. <i>Nature</i> , 2004 , 428, 279-80 Stereospecific carbonBarbon bond formation by the reaction of a chiral episelenonium ion with	50.4	
86	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005 , 39-40 Buckminsterfullerenes: a non-metal system for nitrogen fixation. <i>Nature</i> , 2004 , 428, 279-80 Stereospecific carbonBarbon bond formation by the reaction of a chiral episelenonium ion with aromatic compounds. <i>Tetrahedron Letters</i> , 2004 , 45, 6137-6139 Double phosphinylation of propargylic alcohols: a novel synthetic route to	50.4	22
86 85 84	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005, 39-40 Buckminsterfullerenes: a non-metal system for nitrogen fixation. <i>Nature</i> , 2004, 428, 279-80 Stereospecific carbonBarbon bond formation by the reaction of a chiral episelenonium ion with aromatic compounds. <i>Tetrahedron Letters</i> , 2004, 45, 6137-6139 Double phosphinylation of propargylic alcohols: a novel synthetic route to 1,2-bis(diphenylphosphino)ethane derivatives. <i>Organic Letters</i> , 2004, 6, 3993-5 Preparation of a Series of Chalcogenolate-Bridged Diruthenium Complexes and Their Catalytic	50.4 2 6.2	22 47
86 85 84 83	A Non-Metal System for Nitrogen Fixation Utilizing Buckminsterfullerene 2005, 39-40 Buckminsterfullerenes: a non-metal system for nitrogen fixation. <i>Nature</i> , 2004, 428, 279-80 Stereospecific carbonBarbon bond formation by the reaction of a chiral episelenonium ion with aromatic compounds. <i>Tetrahedron Letters</i> , 2004, 45, 6137-6139 Double phosphinylation of propargylic alcohols: a novel synthetic route to 1,2-bis(diphenylphosphino)ethane derivatives. <i>Organic Letters</i> , 2004, 6, 3993-5 Preparation of a Series of Chalcogenolate-Bridged Diruthenium Complexes and Their Catalytic Activities toward Propargylic Substitution Reactions. <i>Organometallics</i> , 2004, 23, 26-30 Preparation of Alkanechalcogenolate- and Benzenechalcogenolate-Bridged Diruthenium Complexes and Their Catalytic Activity toward Propargylation of Acetone with Propargylic Alcohol.	50.4 2 6.2 3.8	224789

79	Synthesis of Dinuclear Complexes Bearing Metalloporphyrin Phosphine Hybrid Ligands and Their Catalytic Activity toward Hydrosilylation of Ketones. <i>Organometallics</i> , 2004 , 23, 4012-4017	3.8	27
78	Ruthenium- and gold-catalysed sequential reactions: a straightforward synthesis of substituted oxazoles from propargylic alcohols and amides. <i>Chemical Communications</i> , 2004 , 2712-3	5.8	138
77	Ruthenium-Catalyzed Allylation of Aromatic Compounds and Allylic Ether Formation. Organometallics, 2004 , 23, 5841-5848	3.8	49
76	Kinetic Resolution of Racemic Ferrocenylphosphine Compounds by Enantioselective Oxidation Using Cyclic Selenoxides Having a Chiral Ligand. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 381-	357	11
75	Propargylation of Aromatic Compounds with Propargylic Alcohols Catalyzed by a Cationic Diruthenium Complex. <i>Angewandte Chemie</i> , 2003 , 115, 1533-1536	3.6	41
74	Novel Ruthenium- and Platinum-Catalyzed Sequential Reactions: Synthesis of Tri- and Tetrasubstituted Furans and Pyrroles from Propargylic Alcohols and Ketones. <i>Angewandte Chemie</i> , 2003 , 115, 2785-2788	3.6	43
73	Titelbild: Novel Ruthenium- and Platinum-Catalyzed Sequential Reactions: Synthesis of Tri- and Tetrasubstituted Furans and Pyrroles from Propargylic Alcohols and Ketones (Angew. Chem. 23/2003). <i>Angewandte Chemie</i> , 2003 , 115, 2663-2663	3.6	7
72	Propargylation of aromatic compounds with propargylic alcohols catalyzed by a cationic diruthenium complex. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 1495-8	16.4	131
71	Novel ruthenium- and platinum-catalyzed sequential reactions: synthesis of tri- and tetrasubstituted furans and pyrroles from propargylic alcohols and ketones. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 2681-4	16.4	166
70	Cover Picture: Novel Ruthenium- and Platinum-Catalyzed Sequential Reactions: Synthesis of Triand Tetrasubstituted Furans and Pyrroles from Propargylic Alcohols and Ketones (Angew. Chem. Int. Ed. 23/2003). <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 2559-2559	16.4	
69	Novel catalytic hydrogenolysis of silyl enol ethers by the use of acidic ruthenium dihydrogen complexes. <i>Journal of Organometallic Chemistry</i> , 2003 , 679, 32-42	2.3	14
68	Synthesis of Diruthenium Complexes Containing Chiral Thiolate-Bridged Ligands and Their Application to Catalytic Propargylic Alkylation of Propargylic Alcohols with Acetone. <i>Organometallics</i> , 2003 , 22, 873-876	3.8	73
67	Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 5875-80	4.2	73
66	Ruthenium-catalyzed carbon-carbon bond formation between propargylic alcohols and alkenes via the allenylidene-ene reaction. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6060-1	16.4	77
65	Asymmetric synthesis of epoxides from aromatic aldehydes and benzyl halides catalyzed by C2 symmetric optically active sulfides having a binaphthyl skeleton. <i>Heteroatom Chemistry</i> , 2002 , 13, 270-2	275 ²	21
64	Asymmetric Baeyer Villiger Oxidation of Cyclic Ketones Using Chiral Organoselenium Catalysts. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 2233-2237	5.1	30
63	Ruthenium-catalyzed cycloaddition of propargylic alcohols with phenol derivatives via allenylidene intermediates: catalytic use of the allenylidene ligand as the C(3) unit. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7900-1	16.4	119
62	Ruthenium-catalyzed propargylation of aromatic compounds with propargylic alcohols. <i>Journal of the American Chemical Society</i> , 2002 , 124, 11846-7	16.4	149

61	Ruthenium-catalyzed propargylic substitution reaction of propargylic alcohols with thiols: a general synthetic route to propargylic sulfides. <i>Journal of the American Chemical Society</i> , 2002 , 124, 15172-3	16.4	107
60	Palladium(II) complex-catalysed enantioselective benzoylation of alcohols using carbon monoxide and an organobismuth(V) compound. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2002 , 1548-	-1554	19
59	Ruthenium-catalysed asymmetric hydrosilylation of ketoximes using chiral oxazolinylferrocenylphosphines. <i>Chemical Communications</i> , 2001 , 2360-1	5.8	41
58	Protonation of coordinated N2 on tungsten with H2 mediated by sulfido-bridged dinuclear molybdenum complexes. <i>Inorganic Chemistry</i> , 2001 , 40, 578-80	5.1	34
57	Ruthenium-catalyzed propargylic alkylation of propargylic alcohols with ketones: straightforward synthesis of gamma-keto acetylenes. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3393-4	16.4	127
56	Kinetic resolution of secondary alcohols via chiral Pd(II)-complex-catalysed enantioselective benzoylation using CO and organobismuth(V) compound. <i>Chemical Communications</i> , 2001 , 2584-2585	5.8	12
55	Heterolytic Cleavage of Dihydrogen by Ruthenium and Molybdenum Complexes 2001 , 117-138		4
54	Cyclization of Terminal Diynes Catalyzed by Thiolate-Bridged Diruthenium Complexes: A Simple Synthetic Route to endo-Macrocyclic (Z)-1-En-3-ynes. <i>Angewandte Chemie</i> , 2000 , 112, 3031-3033	3.6	7
53	Cyclization of Terminal Diynes Catalyzed by Thiolate-Bridged Diruthenium Complexes: A Simple Synthetic Route to endo-Macrocyclic (Z)-1-En-3-ynes. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2909-2911	16.4	48
52	Synthesis and Structures of 1,1EFerrocenedithiolato-Bridged Di- and Trinuclear Ruthenium Complexes. <i>Organometallics</i> , 2000 , 19, 3249-3252	3.8	23
51	Selenium Compounds as Ligands and Catalysts. <i>Topics in Current Chemistry</i> , 2000 , 235-255		20
50	Formation of ammonia in the reactions of a tungsten dinitrogen with ruthenium dihydrogen complexes under mild reaction conditions. <i>Inorganic Chemistry</i> , 2000 , 39, 5946-57	5.1	45
49	Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. <i>Topics in Current Chemistry</i> , 2000 , 201-233	3	28
48	Novel Propargylic Substitution Reactions Catalyzed by Thiolate-Bridged Diruthenium Complexes via Allenylidene Intermediates. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11019-11020	16.4	176
47	Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using chiral oxazolinylferrocenylphosphines and one of their Ru(II) complex. <i>Journal of Organometallic Chemistry</i> , 1999 , 572, 163-168	2.3	44
46	Hydrogenolyse von Trimethylsilylenolethern unter Verwendung eines sauren Rutheniumdiwasserstoff-Komplexes als Katalysator. <i>Angewandte Chemie</i> , 1999 , 111, 3244-3247	3.6	3
45	Novel Catalytic Hydrogenolysis of Trimethylsilyl Enol Ethers by the Use of an Acidic Ruthenium Dihydrogen Complex. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 3047-3050	16.4	31
44	Extremely High Enantioselective Redox Reaction of Ketones and Alcohols Catalyzed by RuCl2(PPh3)(oxazolinylferrocenylphosphine). <i>Organometallics</i> , 1999 , 18, 2291-2293	3.8	135

43	The use of chiral diferrocenyl diselenides for highly selective asymmetric intramolecular selenocyclisation. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1999 , 1511-1516		22
42	Iridium-Catalyzed Asymmetric Hydrosilylation of Imines Using Chiral Oxazolinyl-Phosphine Ligands. <i>Organometallics</i> , 1999 , 18, 2271-2274	3.8	65
41	Novel Catalytic Hydrogenolysis of Trimethylsilyl Enol Ethers by the Use of an Acidic Ruthenium Dihydrogen Complex 1999 , 38, 3047		1
40	Ruthenium-Catalyzed Asymmetric Hydrosilylation of Ketones and Imine. <i>Organometallics</i> , 1998 , 17, 342	.0 ₅ . 3 3427	2 149
39	Synthesis of Heterobimetallic Fe-M (M = Ni, Pd, Pt) Complexes Containing the 1,1¢Ferrocenedithiolato Ligand and Their Conversion to Trinuclear Complexes. <i>Inorganic Chemistry</i> , 1998 , 37, 6428-6434	5.1	54
38	A Model for Protonation of Dinitrogen by Nitrogenase: Protonation of Coordinated Dinitrogen on Tungsten with Hydrosulfido-Bridged Dinuclear Complexes1. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10559-10560	16.4	37
37	Allylation of arenes catalysed by thiolate-bridged dirutheniumcomplexes. <i>Chemical Communications</i> , 1997 , 859-860	5.8	31
36	Catalytic Asymmetric Sulfimidation. <i>Journal of Organic Chemistry</i> , 1997 , 62, 6512-6518	4.2	99
35	Synthesis, Structures, and Reactivities of Rhodium and Ruthenium Complexes with a Novel Chiral Cyclopentadienyl Eerrocenyldiphenyl phosphine Bidentate Ligand. <i>Organometallics</i> , 1997 , 16, 3091-3093	3.8	43
34	Chiral Bis(oxazoline)-copper Catalyzed Enantioselective Imidation of Sulfides. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1997 , 120, 363-364	1	5
33	Rhodium(I)-, iridium(I)-, and ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using diferrocenyl dichalcogenides as chiral ligands. <i>Journal of Organometallic Chemistry</i> , 1997 , 531, 13-	·1 ² 8 ³	42
32	Synthesis and structure of novel chiral oxazolinylferrocenes and oxazolinylferrocenylphosphines, and their rhodium(I)-complexes. <i>Journal of Organometallic Chemistry</i> , 1997 , 545-546, 381-398	2.3	55
31	Novel Chiral Ligands, Diferrocenyl Dichalcogenides and Their Derivatives, for Rhodium- and Iridium-Catalyzed Asymmetric Hydrosilylation. <i>Organometallics</i> , 1996 , 15, 370-379	3.8	106
30	Enantioselective ortho-Lithiation of Substituted Ferrocenes. <i>Journal of Organic Chemistry</i> , 1996 , 61, 117	7 <u>4</u> -117	4 90
29	Oxidative addition of diferrocenyl dichalcogenides to [$\{Ru(B-C5Me5)(\bar{\mu}3-Cl)\}4$]. Syntheses, crystal structures and some reactivities of [$\{Ru(B-C5Me5)Cl(\bar{\mu}-ER)\}2$](E = S, Se or Te; R = ferrocenyl). Journal of the Chemical Society Dalton Transactions, 1996 , 4307-4312		37
28	Novel asymmetric catalytic synthesis of sulfimides. <i>Chemical Communications</i> , 1996 , 931	5.8	58
27	Iridium(I)-catalysed asymmetric hydrosilylation of ketones using a chiral oxazolylferrocene-phosphine hybrid ligand. <i>Chemical Communications</i> , 1996 , 847	5.8	61
26	Palladium-catalyzed cross-coupling reactions between organic tellurides and alkenes. <i>Journal of Organometallic Chemistry</i> , 1996 , 507, 197-200	2.3	51

25	Palladium-catalyzed homocoupling reactions of organic tellurides. <i>Journal of Organometallic Chemistry</i> , 1996 , 526, 335-339	2.3	37
24	Allylic amine formation by imination of allylic tellurides. <i>Tetrahedron Letters</i> , 1995 , 36, 6725-6728	2	14
23	The first example of chirality transfer in allylic telluroxidespossible [2, 3]-sigmatropic rearrangement. <i>Tetrahedron Letters</i> , 1995 , 36, 1519-1522	2	19
22	Asymmetric Synthesis and Highly Diastereoselective ortho-Lithiation of Oxazolinylferrocenes. <i>Synlett</i> , 1995 , 1995, 79-81	2.2	191
21	Chiral Oxazolinylferrocene-Phosphine Hybrid Ligand for the Asymmetric Hydrosilylation of Ketones. <i>Organometallics</i> , 1995 , 14, 5486-5487	3.8	133
20	The first example of enantioselective carbenoid addition to organochalcogen atoms: application to [2,3]sigmatropic rearrangement of allylic chalcogen ylides. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1245		71
19	High chirality transfer in chiral selenimides via[2,3]sigmatropic rearrangement. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1243		28
18	Highly selective asymmetric intramolecular selenocyclisation. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 2321		45
17	Synthesis of chiral diferrocenyl dichalcogenides and their application to asymmetric nucleophilic ring opening of meso-epoxides. <i>Journal of the Chemical Society Perkin Transactions</i> 1, 1995 , 2871		28
16	[S,R;S,R]-Bis[2-[1-(dimethylamino)ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. [Erratum to document cited in CA123:199072]. <i>Journal of Organic Chemistry</i> , 1995 , 60, 8326-8326	4.2	2
15	Synthesis of [R,S;R,S]- and [S,R;S,R]-Bis[2-[1-(dimethylamino)ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement. <i>Journal of Organic Chemistry</i> , 1995 , 60, 4114-4120	4.2	83
14	Stereo- and Chemo-Selectivity in Reduction of [Phenyl(or Methyl)seleno] alkyl Aryl Ketones with Metal Hydrides. <i>Bulletin of the Chemical Society of Japan</i> , 1995 , 68, 337-340	5.1	6
13	Synthesis of chiral diferrocenyl diselenides and their application to asymmetric reactions. <i>Tetrahedron Letters</i> , 1994 , 35, 3115-3118	2	62
12	Syntheses and reactivities of ferrocenyl organyl tellurides. <i>Journal of Organometallic Chemistry</i> , 1994 , 473, 205-213	2.3	21
11	Rhodium(I)-catalysed asymmetric hydrosilylation of ketones using new diferrocenyl dichalcogenides (R,S)-{[EC5H3CHMe(NMe2)]Fe(C5H5)}2(E = S, Se, Te), as chiral ligands. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1375		56
10	Dinuclear (B-C5Me5)Ru complexes triply bridged by tellurium or selenium ligandsByntheses and characterisation of (B-C5Me5)Ru(B-RTeTeR)(D-TeR)2Ru(B-C5Me5) and [(B-C5Me5)Ru(D-SeR)3Ru(B-C5Me5)]Cl (R = Tol, Ph). Journal of the Chemical Society Chemical		24
9	Asymmetric selenoxide elimination leading to chiral allenic sulfones. <i>Journal of Organic Chemistry</i> , 1993 , 58, 3697-3702	4.2	29
8	Asymmetric [2,3] sigmatropic rearrangement via chiral selenoxide with sharpless oxidants. Tetrahedron Letters, 1993, 34, 2339-2342	2	26

7	Telluroxide elimination by oxidation of alkyl aryl tellurides: remarkable effect of added triethylamine. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1993 , 1133		20
6	The first example of asymmetric selenoxide elimination: application to the synthesis of chiral allenes. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 46		21
5	Catalytic asymmetric oxidation of sulfides to sulfoxides using R-(+)-binaphthol. <i>Tetrahedron Letters</i> , 1992 , 33, 5391-5394	2	65
4	Allenylidene Complexes in Catalysis217-250		3
3	Ammonia Formation Catalyzed by Dinitrogen-Bridged Dirhenium Complex Bearing PNP-Pincer Ligands under Mild Reaction Conditions		3
2	Manganese-Catalyzed Ammonia Oxidation into Dinitrogen		2
1	Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts. Chemistry Letters,	1.7	10