Alberto Jiménez-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The thermal evolution of Mars as constrained by paleo-heat flows. Icarus, 2011, 215, 508-517.	2.5	69
2	The Quaternary Active Faults Database of Iberia (QAFI v.2.0). Journal of Iberian Geology, 2012, 38, .	1.3	69
3	Present-day heat flow model of Mars. Scientific Reports, 2017, 7, 45629.	3.3	50
4	The Galicia–Ossa-Morena Zone: Proposal for a new zone of the Iberian Massif. Variscan implications. Tectonophysics, 2016, 681, 135-143.	2.2	45
5	Lithospheric structure of Venus from gravity and topography. Icarus, 2015, 260, 215-231.	2.5	36
6	The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 2018, 58, 71-86.	6.0	32
7	Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 2014, 391, 55-66.	4.4	29
8	Ediacaran Obduction of a Foreâ€Arc Ophiolite in SW Iberia: A Turning Point in the Evolving Geodynamic Setting of Periâ€Gondwana. Tectonics, 2019, 38, 95-119.	2.8	26
9	Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia. Gondwana Research, 2017, 42, 49-62.	6.0	25
10	The thermal state and strength of the lithosphere in the Spanish Central System and Tajo Basin from crustal heat production and thermal isostasy. Journal of Geodynamics, 2012, 58, 29-37.	1.6	22
11	Thrust fault modeling and Late-Noachian lithospheric structure of the circum-Hellas region, Mars. Icarus, 2017, 288, 53-68.	2.5	18
12	Recent tectonic model for the Upper Tagus Basin (central Spain). Journal of Iberian Geology, 2012, 38, .	1.3	8
13	Regional heat flow and subsurface temperature patterns at Elysium Planitia and Oxia Planum areas, Mars. Icarus, 2021, 353, 113379.	2.5	7
14	Evidence of thrust faulting and widespread contraction of Ceres. Nature Astronomy, 2019, 3, 916-921.	10.1	5
15	Comments on "Using the viscoelastic relaxation of large impact craters to study the thermal history of Mars―(Karimi etÂal., 2016, Icarus 272, 102–113) and "Studying lower crustal flow beneath mead basin: Implications for the thermal history and rheology of Venus―(Karimi and Dombard, 2017, Icarus 282,) Tj ETQq1 1	0.78431	4 rgBT /Over
16	Topographic, lithospheric and lithologic controls on the transient landscape evolution after the opening of internally-drained basins. Modelling the North Iberian Neogene drainage. Bulletin - Societie Geologique De France, 2021, 192, 45.	2.2	4
17	Modeling of Landslides in Valles Marineris, Mars, and Implications for Initiation Mechanism. Earth, Moon and Planets, 2016, 118, 15-26.	0.6	3
18	The thermal structure and mechanical behavior of the martian lithosphere. Icarus, 2021, 353, 113635.	2.5	3

2

#	Article	IF	CITATIONS
19	The stability of a liquid-water body below the south polar cap of Mars. Icarus, 2022, 383, 115073.	2.5	3
20	Spatial variations of the effective elastic thickness and internal load fraction in the Cascadia subduction zone. Geophysical Journal International, 2022, 229, 487-504.	2.4	2
21	Correction to: spatial variations of the effective elastic thickness and internal load fraction in the Cascadia subduction zone. Geophysical Journal International, 2022, 229, 2033-2033.	2.4	0