
Loic Rajjou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seed Germination and Vigor. Annual Review of Plant Biology, 2012, 63, 507-533.	18.7	850
2	The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.	12.6	743
3	The Effect of α-Amanitin on the Arabidopsis Seed Proteome Highlights the Distinct Roles of Stored and Neosynthesized mRNAs during Germination. Plant Physiology, 2004, 134, 1598-1613.	4.8	372
4	Proteome-Wide Characterization of Seed Aging in Arabidopsis: A Comparison between Artificial and Natural Aging Protocols Â. Plant Physiology, 2008, 148, 620-641.	4.8	363
5	Patterns of Protein Oxidation in Arabidopsis Seeds and during Germination Â. Plant Physiology, 2005, 138, 790-802.	4.8	360
6	Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiology, 2006, 141, 910-923.	4.8	347
7	Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant Journal, 2009, 60, 795-804.	5.7	341
8	Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus - Biologies, 2008, 331, 796-805.	0.2	331
9	Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 2016, 57, 660-674.	3.1	260
10	ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 63.	3.6	220
11	Arabidopsis seed secrets unravelled after a decade of genetic and omicsâ€driven research. Plant Journal, 2010, 61, 971-981.	5.7	161
12	Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination. Molecular and Cellular Proteomics, 2014, 13, 252-268.	3.8	143
13	The Arabidopsis <i><scp>DELAY OF GERMINATION</scp> 1</i> gene affects <i><scp>ABSCISIC ACID INSENSITIVE</scp> 5 (<scp>ABI</scp>5)</i> expression and genetically interacts with <i><scp>ABI</scp>3</i> during Arabidopsis seed development. Plant Journal, 2016, 85, 451-465.	5.7	143
14	A role for seed storage proteins in <i>Arabidopsis</i> seed longevity. Journal of Experimental Botany, 2015, 66, 6399-6413.	4.8	127
15	Nitric oxide implication in the control of seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 346.	3.6	101
16	Reboot the system thanks to protein postâ€ŧranslational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 2011, 11, 1606-1618.	2.2	100
17	Interplay between protein carbonylation and nitrosylation in plants. Proteomics, 2013, 13, 568-578.	2.2	83
18	Natural modifiers of seed longevity in the Arabidopsis mutants <i>abscisic acid insensitive3â€5</i> (<i>abi3â€5</i>) and <i>leafy cotyledon1â€3</i> (<i>lec1â€3</i>). New Phytologist, 2009, 184, 898-908.	7.3	65

Loic Rajjou

#	Article	IF	CITATIONS
19	Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming. Frontiers in Plant Science, 2017, 8, 1845.	3.6	56
20	Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect?. Journal of Experimental Botany, 2018, 69, 1369-1385.	4.8	55
21	Proteomic and lipidomic analyses of the Arabidopsis <i>atg5</i> autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. New Phytologist, 2019, 223, 1461-1477.	7.3	54
22	Multi-omics Analysis Reveals Sequential Roles for ABA during Seed Maturation. Plant Physiology, 2019, 180, 1198-1218.	4.8	52
23	Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. Plants, 2020, 9, 347.	3.5	49
24	An Integrated "Multi-Omics―Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. Frontiers in Plant Science, 2017, 8, 1984.	3.6	48
25	Cold Stratification and Exogenous Nitrates Entail Similar Functional Proteome Adjustments during <i>Arabidopsis</i> Seed Dormancy Release. Journal of Proteome Research, 2012, 11, 5418-5432.	3.7	46
26	Compartmentation and Dynamics of Flavone Metabolism in Dry and Germinated Rice Seeds. Plant and Cell Physiology, 2014, 55, 1646-1659.	3.1	44
27	Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination. Plant Physiology, 2016, 170, 1367-1380.	4.8	41
28	Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Science, 2018, 269, 118-125.	3.6	33
29	Novel loci and a role for nitric oxide for seed dormancy and preharvest sprouting in barley. Plant, Cell and Environment, 2019, 42, 1318-1327.	5.7	32
30	Implications of reactive oxygen and nitrogen species in seed physiology for sustainable crop productivity under changing climate conditions. Current Plant Biology, 2021, 26, 100197.	4.7	27
31	Regulation of mRNA translation controls seed germination and is critical for seedling vigor. Frontiers in Plant Science, 2015, 6, 284.	3.6	25
32	NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2019, 60, 318-328.	3.1	25
33	Non-thermal DBD plasma array on seed germination of different plant species. Journal Physics D: Applied Physics, 2019, 52, 025401.	2.8	24
34	The Seed Proteome Web Portal. Frontiers in Plant Science, 2012, 3, 98.	3.6	19
35	Proteomics and Posttranslational Proteomics of Seed Dormancy and Germination. Methods in Molecular Biology, 2011, 773, 215-236.	0.9	18
36	Combined Proteomic and Metabolomic Profiling of the Arabidopsis thaliana vps29 Mutant Reveals Pleiotropic Functions of the Retromer in Seed Development. International Journal of Molecular Sciences, 2019, 20, 362.	4.1	17

Loic Rajjou

#	Article	IF	CITATIONS
37	Improving the nutritional quality of pulses via germination. Food Reviews International, 2023, 39, 6011-6044.	8.4	15
38	The Amborella vacuolar processing enzyme family. Frontiers in Plant Science, 2015, 6, 618.	3.6	14
39	Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and De Novo Transcribed mRNAs in Rice Seeds upon Imbibition. Plant and Cell Physiology, 2019, 60, 2584-2596.	3.1	14
40	Plant Defense Stimulator Mediated Defense Activation Is Affected by Nitrate Fertilization and Developmental Stage in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 583.	3.6	14
41	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
42	Novel Cytonuclear Combinations Modify Arabidopsis thaliana Seed Physiology and Vigor. Frontiers in Plant Science, 2019, 10, 32.	3.6	12
43	A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes, 2017, 5, 19.	3.5	11
44	Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. Frontiers in Plant Science, 0, 13, .	3.6	9
45	Proteome Analysis for the Study of Developmental Processes in Plants. , 0, , 151-184.		7
46	Proteome of Seed Development and Germination. , 0, , 191-206.		6
47	Specialized metabolites in seeds. Advances in Botanical Research, 2021, , 35-70.	1.1	6
48	Protein Farnesylation Takes Part in Arabidopsis Seed Development. Frontiers in Plant Science, 2021, 12, 620325.	3.6	5
49	A Role for "Omics―Technologies in Exploration of the Seed Nutritional Quality. , 2012, , 477-501.		2
50	In-Depth Proteomic Analysis of the Secondary Dormancy Induction by Hypoxia or High Temperature in Barley Grains. Plant and Cell Physiology, 2022, , .	3.1	1
51	The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. Plants, 2020, 9, 573.	3.5	0