Christine Wiedinmyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269205/publications.pdf

Version: 2024-02-01

22153 13379 20,058 148 59 130 citations h-index g-index papers 185 185 185 15429 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
2	Quantifying Carbon Monoxide Emissions on the Scale of Large Wildfires. Geophysical Research Letters, 2022, 49, .	4.0	14
3	Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters, 2022, 17, 045014.	5. 2	14
4	Wildfire burn severity and emissions inventory: an example implementation over California. Environmental Research Letters, 2022, 17, 085008.	5. 2	9
5	A fuel-based method for updating mobile source emissions during the COVID-19 pandemic. Environmental Research Letters, 2021, 16, 065018.	5. 2	28
6	Temporary pause in the growth of atmospheric ethane and propane in 2015–2018. Atmospheric Chemistry and Physics, 2021, 21, 15153-15170.	4.9	6
7	Health impacts of a randomized biomass cookstove intervention in northern Ghana. BMC Public Health, 2021, 21, 2211.	2.9	3
8	Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications, 2021, 12, 7044.	12.8	26
9	Ambient measurements of monoterpenes near Cannabis cultivation facilities in Denver, Colorado. Atmospheric Environment, 2020, 232, 117510.	4.1	5
10	Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environmental Research Letters, 2020, 15, 094054.	5.2	30
11	How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmospheric Chemistry and Physics, 2020, 20, 2073-2097.	4.9	67
12	A Case-Crossover Analysis of Indoor Heat Exposure on Mortality and Hospitalizations among the Elderly in Houston, Texas. Environmental Health Perspectives, 2020, 128, 127007.	6.0	13
13	Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Science of the Total Environment, 2019, 646, 309-319.	8.0	55
14	Attributing Air Pollutant Exposure to Emission Sources with Proximity Sensing. Atmosphere, 2019, 10, 395.	2.3	10
15	Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana. Atmosphere, 2019, 10, 402.	2.3	7
16	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	4.9	64
17	New estimate of particulate emissions from Indonesian peat fires in 2015. Atmospheric Chemistry and Physics, 2019, 19, 11105-11121.	4.9	63
18	Urban heat and air pollution: A framework for integrating population vulnerability and indoor exposure in health risk analyses. Science of the Total Environment, 2019, 660, 715-723.	8.0	72

#	Article	IF	Citations
19	Updated Emission Factors from Diffuse Combustion Sources in Sub-Saharan Africa and Their Effect on Regional Emission Estimates. Environmental Science & Technology, 2019, 53, 6392-6401.	10.0	5
20	Adoption of improved biomass stoves and stove/fuel stacking in the REACCTING intervention study in Northern Ghana. Energy Policy, 2019, 130, 361-374.	8.8	47
21	Radiative Effects of Residential Sector Emissions in China: Sensitivity to Uncertainty in Black Carbon Emissions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5029-5044.	3.3	5
22	Vegetation-fire feedback reduces projected area burned under climate change. Scientific Reports, 2019, 9, 2838.	3.3	76
23	Potential regional air quality impacts of cannabis cultivation facilities in Denver, Colorado. Atmospheric Chemistry and Physics, 2019, 19, 13973-13987.	4.9	13
24	Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in Houston, Texas. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 806-820.	3.9	16
25	Leaf enclosure measurements for determining volatile organic compound emission capacity from Cannabis spp Atmospheric Environment, 2019, 199, 80-87.	4.1	19
26	How Will Air Quality Change in South Asia by 2050?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1840-1864.	3.3	61
27	Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. Environment International, 2018, 117, 116-124.	10.0	48
28	Environmental Conditions, Ignition Type, and Air Quality Impacts of Wildfires in the Southeastern and Western United States. Earth's Future, 2018, 6, 1442-1456.	6.3	38
29	Detailed Characterization of Organic Carbon from Fire: Capitalizing on Analytical Advances To Improve Atmospheric Models. ACS Symposium Series, 2018, , 349-361.	0.5	0
30	Liquified Petroleum Gas (LPG) Supply and Demand for Cooking in Northern Ghana. EcoHealth, 2018, 15, 716-728.	2.0	33
31	Improving present day and future estimates of anthropogenic sectoral emissions and the resulting air quality impacts in Africa. Faraday Discussions, 2017, 200, 397-412.	3.2	19
32	Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 76-104.	1.4	0
33	Impact of Southeast Asian smoke on aerosol properties in Southwest China: First comparison of model simulations with satellite and ground observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3904-3919.	3.3	33
34	Changing weather and climate in Northern Ghana: comparison of local perceptions with meteorological and land cover data. Regional Environmental Change, 2017, 17, 915-928.	2.9	29
35	New Emission Factors and Efficiencies from in-Field Measurements of Traditional and Improved Cookstoves and Their Potential Implications. Environmental Science & Environmental Science, 2017, 51, 12508-12517.	10.0	67
36	Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China. Environmental Research Letters, 2017, 12, 075004.	5.2	35

#	Article	IF	CITATIONS
37	Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 2017, 44, 7965-7974.	4.0	41
38	Rural–urban differences in cooking practices and exposures in Northern Ghana. Environmental Research Letters, 2017, 12, 065009.	5.2	27
39	Exposures to and origins of carbonaceous PM2.5 in a cookstove intervention in Northern Ghana. Science of the Total Environment, 2017, 576, 178-192.	8.0	22
40	Toward a chemical reanalysis in a coupled chemistryâ€climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7310-7343.	3.3	37
41	The Earth Science Women's Network (ESWN): Community-Driven Mentoring for Women in the Atmospheric Sciences. Bulletin of the American Meteorological Society, 2016, 97, 345-354.	3.3	13
42	Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 2016, 6, 37074.	3.3	151
43	Air Quality Impact of Diffuse and Inefficient Combustion Emissions in Africa (DICE-Africa). Environmental Science & Environmental Science & Environmen	10.0	103
44	The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China. Environmental Science & Environmental Scienc	10.0	66
45	Assessment of cookstove stacking in Northern Ghana using surveys and stove use monitors. Energy for Sustainable Development, 2016, 34, 67-76.	4.5	64
46	Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmospheric Chemistry and Physics, 2016, 16, 10133-10158.	4.9	109
47	The aerosol radiative effects of uncontrolled combustion of domestic waste. Atmospheric Chemistry and Physics, 2016, 16, 6771-6784.	4.9	28
48	Global burden of mortalities due to chronic exposure to ambient PM _{2.5} from open combustion of domestic waste. Environmental Research Letters, 2016, 11, 124022.	5.2	51
49	Seasonal and Diurnal Air Pollution from Residential Cooking and Space Heating in the Eastern Tibetan Plateau. Environmental Science & Eamp; Technology, 2016, 50, 8353-8361.	10.0	65
50	"What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health― Environmental Science & Technology, 2016, 50, 4895-4904.	10.0	294
51	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
52	Impacts of an Improved Cookstove Intervention on Cooking Behaviors, Emissions, Personal Exposure, and Health. ISEE Conference Abstracts, 2016, 2016, .	0.0	0
53	Quantifying the adoption, usage patterns, and air pollution concentrations from a novel household energy package in the Tibetan Plateau. ISEE Conference Abstracts, 2016, 2016, .	0.0	0
54	Updated emissions inventory of diffuse and inefficient combustion in Africa (DICE-Africa). Clean Air Journal, 2016, 26, 6.	0.5	3

#	Article	IF	CITATIONS
55	Estimating sources of elemental and organic carbon and their temporal emission patterns using a least squares inverse model and hourly measurements from the St. Louis–Midwest supersite. Atmospheric Chemistry and Physics, 2015, 15, 2405-2427.	4.9	25
56	Source sector and region contributions to BC and PM _{2.5} in Central Asia. Atmospheric Chemistry and Physics, 2015, 15, 1683-1705.	4.9	18
57	The effects of global change upon United States air quality. Atmospheric Chemistry and Physics, 2015, 15, 12645-12665.	4.9	27
58	Facilitating Career Advancement for Women in the Geosciences through the Earth Science Women's Network (ESWN). Special Publications, 2015, , 149-159.	0.0	2
59	Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol. BMC Public Health, 2015, 15, 126.	2.9	37
60	Breathing easier in the Amazon. Nature Geoscience, 2015, 8, 751-752.	12.9	1
61	Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America. Global Biogeochemical Cycles, 2015, 29, 1092-1108.	4.9	70
62	Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region. Environmental Research Letters, 2014, 9, 075002.	5.2	51
63	Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Science of the Total Environment, 2014, 473-474, 275-285.	8.0	58
64	Identifying PM _{2.5} and PM _{0.1} Sources for Epidemiological Studies in California. Environmental Science & E	10.0	72
65	Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Environ	10.0	362
66	Projected Effects of Climate and Development on California Wildfire Emissions through 2100. Environmental Science & Environmen	10.0	57
67	Predicting Primary PM _{2.5} and PM _{0.1} Trace Composition for Epidemiological Studies in California. Environmental Science & Environm	10.0	56
68	Aerosol microphysical impact on summertime convective precipitation in the Rocky Mountain region. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,709-11,728.	3.3	6
69	An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1883-1902.	3.3	69
70	Personal and Micro-Environmental Monitoring of Cookstove Emissions in Rural Northern Ghana. ISEE Conference Abstracts, 2014, 2014, 1854.	0.0	0
71	Contrast and correlations between coarse and fine particulate matter in the United States. Science of the Total Environment, 2013, 456-457, 346-358.	8.0	24
72	Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere. Environmental Science & Environmental S	10.0	349

#	Article	IF	Citations
73	Characterization of coarse particulate matter in the western United States: a comparison between observation and modeling. Atmospheric Chemistry and Physics, 2013, 13, 1311-1327.	4.9	13
74	A decadal satellite analysis of the origins and impacts of smoke in Colorado. Atmospheric Chemistry and Physics, 2013, 13, 7429-7439.	4.9	44
75	Plant Influences on Atmospheric Chemistry. , 2013, , 1-23.		0
76	Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers. Journal of the Air and Waste Management Association, 2012, 62, 1061-1074.	1.9	18
77	Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): chemistry evaluation and initial results. Geoscientific Model Development, 2012, 5, 619-648.	3.6	144
78	Meteorological Impacts of Forest Mortality due to Insect Infestation in Colorado. Earth Interactions, 2012, 16, 1-11.	1.5	19
79	Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method. Atmospheric Chemistry and Physics, 2012, 12, 8993-9011.	4.9	19
80	The Role of Weather in Meningitis Outbreaks in Navrongo, Ghana: A Generalized Additive Modeling Approach. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17, 442-460.	1.4	46
81	Aerosols from Fires: An Examination of the Effects on Ozone Photochemistry in the Western United States. Environmental Science & Environmental Science	10.0	61
82	Impact of Trash Burning on Air Quality in Mexico City. Environmental Science & Emp; Technology, 2012, 46, 4950-4957.	10.0	51
83	Australia's Black Saturday fires – Comparison of techniques for estimating emissions from vegetation fires. Atmospheric Environment, 2012, 60, 262-270.	4.1	23
84	Transport of Asian ozone pollution into surface air over the western United States in spring. Journal of Geophysical Research, $2012,117,$	3.3	218
85	Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts. Journal of Geophysical Research, 2012, 117, .	3.3	24
86	Atmospheric bioaerosols transported via dust storms in the western United States. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	65
87	The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 2011, 4, 625-641.	3.6	1,278
88	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	4.9	1,527
89	Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 2011, 11, 6787-6808.	4.9	133
90	Characterizing summertime chemical boundary conditions for airmasses entering the US West Coast. Atmospheric Chemistry and Physics, 2011, 11, 1769-1790.	4.9	90

#	Article	IF	CITATIONS
91	CO source contribution analysis for California during ARCTAS-CARB. Atmospheric Chemistry and Physics, 2011, 11, 7515-7532.	4.9	79
92	Observations of nonmethane organic compounds during ARCTAS â° Part 1: Biomass burning emissions and plume enhancements. Atmospheric Chemistry and Physics, 2011, 11, 11103-11130.	4.9	80
93	Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign. Atmospheric Chemistry and Physics, 2011, 11, 3543-3563.	4.9	43
94	Persistent daily new particle formation at a mountain-top location. Atmospheric Environment, 2011, 45, 4111-4115.	4.1	69
95	Comparing changes in air pollutant concentration before and after cook-stove replacement in rural Ghana. ISEE Conference Abstracts, 2011, 2011, .	0.0	0
96	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (TO) $\hat{a} \in \text{Part 2}$: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341.	4.9	182
97	Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 2010, 10, 5361-5370.	4.9	54
98	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	4.9	82
99	Sensitivity of biogenic secondary organic aerosols to future climate change at regional scales: An online coupled simulation. Atmospheric Environment, 2010, 44, 4891-4907.	4.1	24
100	Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 2010, 3, 43-67.	3.6	1,590
101	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115 , .	3.3	89
102	Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States. Environmental Science & Environme	10.0	130
103	Response to Comment on "Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States― Environmental Science & Technology, 2010, 44, 6521-6521.	10.0	2
104	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.	3.3	175
105	The contribution of biological particles to observed particulate organic carbon at a remote high altitude site. Atmospheric Environment, 2009, 43, 4278-4282.	4.1	41
106	Future land use and land cover influences on regional biogenic emissions and air quality in the United States. Atmospheric Environment, 2009, 43, 5771-5780.	4.1	46
107	Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 2009, 26, 962-972.	4.3	110
108	Characterization of Airborne Microbial Communities at a High-Elevation Site and Their Potential To Act as Atmospheric Ice Nuclei. Applied and Environmental Microbiology, 2009, 75, 5121-5130.	3.1	273

#	Article	IF	Citations
109	Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmospheric Chemistry and Physics, 2009, 9, 271-285.	4.9	118
110	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6191-6215.	4.9	138
111	Attribution of projected changes in summertime US ozone and PM _{2.5} concentrations to global changes. Atmospheric Chemistry and Physics, 2009, 9, 1111-1124.	4.9	82
112	The effects of global changes upon regional ozone pollution in the United States. Atmospheric Chemistry and Physics, 2009, 9, 1125-1141.	4.9	56
113	A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmospheric Chemistry and Physics, 2009, 9, 4987-5005.	4.9	750
114	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	4.9	433
115	Impacts of the fall 2007 California wildfires on surface ozone: Integrating local observations with global model simulations. Geophysical Research Letters, 2008, 35, .	4.0	121
116	Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. Journal of Geophysical Research, 2008, 113 , .	3.3	87
117	Secondary Organic Aerosol from Sesquiterpene and Monoterpene Emissions in the United States. Environmental Science & Environme	10.0	67
118	Monoterpene and Sesquiterpene Emission Estimates for the United States. Environmental Science & Emp; Technology, 2008, 42, 1623-1629.	10.0	182
119	The impact of satellite-derived biomass burning emission estimates on air quality. Proceedings of SPIE, 2008, , .	0.8	0
120	A meteorological overview of the MILAGRO field campaigns. Atmospheric Chemistry and Physics, 2007, 7, 2233-2257.	4.9	199
121	Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects. Atmospheric Chemistry and Physics, 2007, 7, 4043-4064.	4.9	198
122	Mercury Emission Estimates from Fires: An Initial Inventory for the United States. Environmental Science & Environmental Scien	10.0	87
123	Sesquiterpene Emissions from Pine Trees â^ Identifications, Emission Rates and Flux Estimates for the Contiguous United States. Environmental Science & Environmental Science & 2007, 41, 1545-1553.	10.0	159
124	Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance and Management, 2007, 2, 10.	3.2	110
125	Importance of wet precipitation as a removal and transport process for atmospheric water soluble carbonyls. Atmospheric Environment, 2007, 41, 790-796.	4.1	19
126	Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. Journal of Geophysical Research, 2006, 111, .	3.3	240

#	Article	IF	CITATIONS
127	Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and) Tj ETQq1 1 C	.784314 rg	BT/Overlock
128	Estimating emissions from fires in North America for air quality modeling. Atmospheric Environment, 2006, 40, 3419-3432.	4.1	371
129	Future Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and Global Atmospheric Chemistry?. Earth Interactions, 2006, 10, 1-19.	1.5	110
130	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
131	Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophysical Research Letters, 2005, 32, .	4.0	163
132	Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the "isoprene volcano― Journal of Geophysical Research, 2005, 110, .	3.3	62
133	Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biology, 2004, 10, 651-662.	9.5	75
134	Nitric acid loss rates measured in power plant plumes. Journal of Geophysical Research, 2004, 109, .	3.3	22
135	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, , 115-170.	1.6	65
136	Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	126
137	Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	53
138	Particle growth in urban and industrial plumes in Texas. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	109
139	Effect of petrochemical industrial emissions of reactive alkenes and NOxon tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	263
140	Simulating biogenic volatile organic compound emissions in the Community Climate System Model. Journal of Geophysical Research, 2003, 108, .	3.3	106
141	An examination of the chemistry of peroxycarboxylic nitric anhydrides and related volatile organic compounds during Texas Air Quality Study 2000 using ground-based measurements. Journal of Geophysical Research, 2003, 108, ACH 4-1-ACH 4-12.	3.3	48
142	Airborne observations of vegetation and implications for biogenic emission characterization. Journal of Environmental Monitoring, 2003, 5, 977.	2.1	4
143	Effects of Land Use Data on Dry Deposition in a Regional Photochemical Model for Eastern Texas. Journal of the Air and Waste Management Association, 2001, 51, 1211-1218.	1.9	12
144	Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atmospheric Environment, 2001, 35, 1001-1013.	4.1	75

#	Article	IF	CITATIONS
145	A land use database and examples of biogenic isoprene emission estimates for the state of Texas, USA. Atmospheric Environment, 2001, 35, 6465-6477.	4.1	41
146	Biogenic hydrocarbon emission estimates for North Central Texas. Atmospheric Environment, 2000, 34, 3419-3435.	4.1	22
147	Meteorological impacts of forest mortality due to insect infestation in Colorado. Earth Interactions, 0, , 111227090315001.	1.5	O
148	Greenhouse gas and air pollutant emissions from power barges (powerships). Environmental Science Advances, 0, , .	2.7	1