
Zachary H Houston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Central Science, 2018, 4, 718-723.	11.3	181
2	Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017, 141, 330-339.	11.4	68
3	Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery. Organic and Biomolecular Chemistry, 2013, 11, 1116.	2.8	63
4	Overcoming Instability of Antibodyâ€Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies. Advanced Healthcare Materials, 2016, 5, 2055-2068.	7.6	52
5	Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics. Molecular Pharmaceutics, 2017, 14, 3539-3549.	4.6	45
6	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. Advanced Healthcare Materials, 2019, 8, e1801607.	7.6	38
7	Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chemical Communications, 2018, 54, 11538-11541.	4.1	37
8	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS Central Science, 2020, 6, 727-738.	11.3	36
9	Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: An ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 102-107.	4.3	35
10	Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Applied Materials & Interfaces, 2017, 9, 41159-41167.	8.0	33
11	Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS Nano, 2020, 14, 13739-13753.	14.6	30
12	A Convenient Route to Diversely Substituted Icosahedral Closomer Nanoscaffolds. Journal of the American Chemical Society, 2011, 133, 12382-12385.	13.7	29
13	Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 371-378.	4.3	27
14	<i>In vivo</i> therapeutic evaluation of polymeric nanomedicines: effect of different targeting peptides on therapeutic efficacy against breast cancer. Nanotheranostics, 2018, 2, 360-370.	5.2	23
15	Influence of Charge on Hemocompatibility and Immunoreactivity of Polymeric Nanoparticles. ACS Applied Bio Materials, 2018, 1, 756-767.	4.6	23
16	Importance of Polymer Length in Fructose-Based Polymeric Micelles for an Enhanced Biological Activity. Macromolecules, 2019, 52, 477-486.	4.8	23
17	Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. Chemical Science, 2020, 11, 3268-3280.	7.4	22
18	Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions. ACS Sensors, 2018, 3, 967-975.	7.8	21

ZACHARY H HOUSTON

#	Article	IF	CITATIONS
19	Hyperbranched Poly(2-oxazoline)s and Poly(ethylene glycol): A Structure–Activity Comparison of Biodistribution. Biomacromolecules, 2020, 21, 3318-3331.	5.4	18
20	Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1). EJNMMI Research, 2020, 10, 46.	2.5	18
21	Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. International Journal of Molecular Sciences, 2019, 20, 1280.	4.1	17
22	Poly(2-ethyl-2-oxazoline) bottlebrushes: How nanomaterial dimensions can influence biological interactions. European Polymer Journal, 2021, 151, 110447.	5.4	16
23	Synthesis of Vertex-Differentiated Icosahedral <i>closo</i> Boranes: Polyfunctional Scaffolds for Targeted Drug Delivery. Journal of Organic Chemistry, 2012, 77, 11333-11338.	3.2	14
24	Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules, 2020, 21, 2320-2333.	5.4	14
25	Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Letters, 2019, 8, 1479-1483.	4.8	13
26	Understanding nanomedicine treatment in an aggressive spontaneous brain cancer model at the stage of early blood brain barrier disruption. Biomaterials, 2022, 283, 121416.	11.4	13
27	Investigation of the Therapeutic Potential of a Synergistic Delivery System through Dual Controlled Release of Camptothecin–Doxorubicin. Advanced Therapeutics, 2020, 3, 1900202.	3.2	12
28	Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Locoâ€Regional Delivery with Cellâ€Target Specificity. Advanced Therapeutics, 2020, 3, 1900171.	3.2	10
29	Pre-targeting of polymeric nanomaterials to balance tumour accumulation and clearance. Chemical Communications, 2022, 58, 7912-7915.	4.1	9
30	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	6.7	4
31	Evaluation of the in vivo fate of ultrapure alginate in a BALB/c mouse model. Carbohydrate Polymers, 2021, 262, 117947.	10.2	3
32	Synthesis, characterisation and evaluation of hyperbranched <i>N</i> -(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2022, 10, 2328-2344.	5.4	3
33	Investigation of a Dual siRNA/Chemotherapy Delivery System for Breast Cancer Therapy. ACS Omega, 0, ,	3.5	3
34	Targeted Nanomaterials: Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 1994-1994.	7.6	2
35	Design-led 3D visualization of nanomedicines in virtual reality. , 2018, , .		1
36	Simultaneous Dual Echo Gadolinium Enhanced MR-PET for Evaluation of PET Tracer Delivery in Altered Pathophysiology. Frontiers in Physics, 2022, 10, .	2.1	0