
Ji Yong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2269053/publications.pdf Version: 2024-02-01

LI YONG CHOL

#	Article	IF	CITATIONS
1	Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker. Journal of the American Chemical Society, 2022, 144, 10615-10621.	13.7	39
2	From 2D to 3D: Postsynthetic Pillar Insertion in Electrically Conductive MOF. ACS Nano, 2022, 16, 3145-3151.	14.6	38
3	Surface activation of cobalt oxide nanoparticles for photocatalytic carbon dioxide reduction to methane. Journal of Materials Chemistry A, 2019, 7, 15068-15072.	10.3	33
4	Engineering Reaction Kinetics by Tailoring the Metal Tips of Metal–Semiconductor Nanodumbbells. Nano Letters, 2017, 17, 5688-5694.	9.1	31
5	Metal–semiconductor double shell hollow nanocubes for highly stable hydrogen generation photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13414-13418.	10.3	30
6	Formation of Metal Selenide and Metal–Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals. Chemistry - an Asian Journal, 2015, 10, 1452-1456.	3.3	16
7	Composition effect of alloy semiconductors on Pt-tipped Zn _{1â^'x} Cd _x Se nanorods for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 16316-16321.	10.3	14
8	Optimal Length of Hybrid Metal–Semiconductor Nanorods for Photocatalytic Hydrogen Generation. ACS Catalysis, 2021, 11, 13303-13311.	11.2	14
9	Air-stable CuInSe ₂ nanoparticles formed through partial cation exchange in methanol at room temperature. CrystEngComm, 2016, 18, 6069-6075.	2.6	11
10	Regulation of electron-hole recombination kinetics on uniform metal-semiconductor nanostructures for photocatalytic hydrogen evolution. APL Materials, 2019, 7, 100702.	5.1	11
11	Iron-Based 2D Conductive Metal–Organic Framework Nanostructure with Enhanced Pseudocapacitance. ACS Applied Nano Materials, 2022, 5, 2156-2162.	5.0	10
12	Strategies for Designing Nanoparticles for Electro―and Photocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2020, 15, 253-265.	3.3	9
13	Enhancing Electrical Conductivity of Semiconducting MOFs via Defect Healing. ACS Applied Electronic Materials, 2021, 3, 4197-4202.	4.3	9
14	Metal–CdSe Double Shell Hollow Nanocubes via Sequential Nanoscale Reactions and Their Photocatalytic Hydrogen Evolution. Topics in Catalysis, 2018, 61, 965-976.	2.8	1
15	A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms. Nanoscale Advances, 2019, 1, 3948-3956.	4.6	1