
Justin L Grobe,, Faha, Faps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2268439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-term Housing in Metabolic Caging on Measures of Energy and Fluid Balance in Male C57BL/6J Mice (<i> Mus musculus</i>). Journal of the American Association for Laboratory Animal Science, 2022, 61, 132-139.	0.6	8
2	Nicotinamide Riboside-Conditioned Microbiota Deflects High-Fat Diet-Induced Weight Gain in Mice. MSystems, 2022, 7, e0023021.	1.7	12
3	Methods for the Comprehensive in vivo Analysis of Energy Flux, Fluid Homeostasis, Blood Pressure, and Ventilatory Function in Rodents. Frontiers in Physiology, 2022, 13, 855054.	1.3	15
4	Cardiometabolic effects of DOCA-salt in male C57BL/6J mice are variably dependent on sodium and nonsodium components of diet. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R467-R485.	0.9	7
5	Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. Function, 2022, 3, zqac017.	1.1	6
6	NSAID-Induced Enteropathy Affects Regulation of Hepatic Glucose Production by Decreasing GLP-1 Secretion. Nutrients, 2022, 14, 120.	1.7	3
7	Melanocortin MC ₄ R receptor is required for energy expenditure but not blood pressure effects of angiotensin II within the mouse brain. Physiological Genomics, 2022, 54, 196-205.	1.0	2
8	Deletion of Prorenin Receptor in the Rostral Ventrolateral Medulla Results in Biphasic and Sexâ€Dependent Pressor Responses in Deoxycorticosterone Acetateâ€salt Hypertension. FASEB Journal, 2022, 36, .	0.2	0
9	Low Sodium Supply in Early Life Causes Growth Restriction and Programs Longâ€Term Changes in Energy Homeostasis. FASEB Journal, 2022, 36, .	0.2	1
10	Gq Signaling in the Placental Syncytiotrophoblast Layer During Preeclampsia. FASEB Journal, 2022, 36, .	0.2	0
11	Role of βâ€Arrestin2 as a Regulator of Fluid Homeostasis and Blood Pressure. FASEB Journal, 2022, 36, .	0.2	0
12	Genetic Background in the Rat Impacts Metabolic Outcomes of Postâ€wean BPF Exposure. FASEB Journal, 2022, 36, .	0.2	0
13	Altered ERKâ€mediated control of AgRP and metabolic rate during obesity. FASEB Journal, 2022, 36, .	0.2	0
14	Female‧pecific Features of Metabolic Syndrome in an LH Congenic Rat. FASEB Journal, 2022, 36, .	0.2	0
15	Chronic intracerebroventricular infusion of angiotensin II causes dose- and sex-dependent effects on intake behaviors and energy homeostasis in C57BL/6J mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R410-R421.	0.9	4
16	Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovascular Research, 2021, 117, 308-319.	1.8	20
17	β-Arrestin–Biased Agonist Targeting the Brain AT ₁ R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2021, 77, 420-431.	1.3	14
18	Quantification of body fluid compartmentalization by combined time-domain nuclear magnetic resonance and bioimpedance spectroscopy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R44-R54.	0.9	15

#	Article	IF	CITATIONS
19	Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicological Sciences, 2021, 181, 246-261.	1.4	6
20	Gut Microbiota Represent a Major Thermogenic Biomass. Function, 2021, 2, zqab019.	1.1	19
21	Dissociable effects of dietary sodium in early life upon somatic growth, fluid homeostasis, and spatial memory in mice of both sexes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R438-R451.	0.9	6
22	EP3 (E-Prostanoid 3) Receptor Mediates Impaired Vasodilation in a Mouse Model of Salt-Sensitive Hypertension. Hypertension, 2021, 77, 1399-1411.	1.3	14
23	Recent Advances in Hypertension. Hypertension, 2021, 77, 1061-1068.	1.3	16
24	Maturational changes in sodium metabolism in periviable infants. Pediatric Nephrology, 2021, 36, 3693-3698.	0.9	8
25	Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Frontiers in Physiology, 2021, 12, 691226.	1.3	2
26	BBSome ablation in SF1 neurons causes obesity without comorbidities. Molecular Metabolism, 2021, 48, 101211.	3.0	15
27	Team Science: American Heart Association's Hypertension Strategically Focused Research Network Experience. Hypertension, 2021, 77, 1857-1866.	1.3	0
28	Studies of salt and stress sensitivity on arterial pressure in renin-b deficient mice. PLoS ONE, 2021, 16, e0250807.	1.1	2
29	Activation of the Central Renin-Angiotensin System Causes Local Cerebrovascular Dysfunction. Stroke, 2021, 52, 2404-2413.	1.0	11
30	Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-Bl–Mediated High-Density Lipoprotein Uptake. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2708-2725.	1.1	6
31	Vascular Dysfunction in Preeclampsia. Cells, 2021, 10, 3055.	1.8	73
32	Reduced mRNA Expression of RGS2 (Regulator of G Protein Signaling-2) in the Placenta Is Associated With Human Preeclampsia and Sufficient to Cause Features of the Disorder in Mice. Hypertension, 2020, 75, 569-579.	1.3	24
33	Coupling of energy intake and energy expenditure across a temperature spectrum: impact of diet-induced obesity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E472-E484.	1.8	6
34	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	2.9	31
35	Beat-to-Beat Blood Pressure Variability in the First Trimester Is Associated With the Development of Preeclampsia in a Prospective Cohort. Hypertension, 2020, 76, 1800-1807.	1.3	11
36	Single-Nucleus RNA Sequencing of the Hypothalamic Arcuate Nucleus of C57BL/6J Mice After Prolonged Diet-Induced Obesity. Hypertension, 2020, 76, 589-597.	1.3	23

#	Article	IF	CITATIONS
37	Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or agouti-related peptide. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R855-R869.	0.9	9
38	Fetal storage of osmotically inactive sodium. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R512-R514.	0.9	6
39	A colorful view of the brain renin–angiotensin system. Hypertension Research, 2020, 43, 357-359.	1.5	7
40	The Renin-Angiotensin System in the Central Nervous System and Its Role in Blood Pressure Regulation. Current Hypertension Reports, 2020, 22, 7.	1.5	60
41	Feeding Formula Eliminates the Necessity of Bacterial Dysbiosis and Induces Inflammation and Injury in the Paneth Cell Disruption Murine NEC Model in an Osmolality-Dependent Manner. Nutrients, 2020, 12, 900.	1.7	10
42	Increased Susceptibility of Mice Lacking Renin-b to Angiotensin Il–Induced Organ Damage. Hypertension, 2020, 76, 468-477.	1.3	8
43	Tight Regulation of Energy Intake and Expenditure Across a Temperature Spectrum is Disrupted at Thermoneutrality. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
44	Prorenin Induces Intracellular Signaling And Reactive Oxygen Species In The Brainstem. FASEB Journal, 2020, 34, 1-1.	0.2	0
45	Common Laboratory Chow Diets Differentially Affect Energy Homeostasis and Modify Metabolic and Electrolyte Balance Effects of DOCAâ€salt in Wildtype Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
46	Susceptibility of Mice Lacking Reninâ€b to Chronic Angiotensin II Infusion. FASEB Journal, 2020, 34, 1-1.	0.2	0
47	Human Fetuses Accrue Osmotically Inactive Sodium Stores in Anticipation of Birth. FASEB Journal, 2020, 34, 1-1.	0.2	0
48	CREB and ERK Activation by Leptin and Angiotensin in the GT1â€7 Cell Model by Capillary Electrophoresisâ€Based Western Blotting. FASEB Journal, 2020, 34, 1-1.	0.2	0
49	Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Scientific Reports, 2019, 9, 630.	1.6	63
50	The BBSome in POMC and AgRP Neurons Is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors. Diabetes, 2019, 68, 1591-1603.	0.3	32
51	Endothelial PPARγ (Peroxisome Proliferator–Activated Receptor-γ) Protects From Angiotensin Il–Induced Endothelial Dysfunction in Adult Offspring Born From Pregnancies Complicated by Hypertension. Hypertension, 2019, 74, 173-183.	1.3	18
52	Comparison of the Effects of Highâ€Fat Diet on Energy Flux in Mice Using Two Multiplexed Metabolic Phenotyping Systems. Obesity, 2019, 27, 793-802.	1.5	24
53	The renin–angiotensin system in the arcuate nucleus controls resting metabolic rate. Current Opinion in Nephrology and Hypertension, 2019, 28, 120-127.	1.0	14
54	Effect of Aspirin on Placental Gene Expression in Preeclampsia. FASEB Journal, 2019, 33, 865.14.	0.2	0

Justin L Grobe,, Faha, Faps

#	Article	IF	CITATIONS
55	Susceptibility of Mice Lacking Reninâ€b to Chronic Angiotensin II Infusion. FASEB Journal, 2019, 33, 835.14.	0.2	О
56	CRISPR as9 Gene Editing Yields a Novel Rat Model of Cardiometabolic Disease. FASEB Journal, 2019, 33, 597.1.	0.2	0
57	Elevated vasopressin in pregnant mice induces T-helper subset alterations consistent with human preeclampsia. Clinical Science, 2018, 132, 419-436.	1.8	39
58	Control of Energy Expenditure by AgRP Neurons of the Arcuate Nucleus: Neurocircuitry, Signaling Pathways, and Angiotensin. Current Hypertension Reports, 2018, 20, 25.	1.5	24
59	Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight, 2018, 3, .	2.3	55
60	Angiotensin AT _{1A} receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R770-R780.	0.9	29
61	Regulators of G protein signaling in cardiovascular function during pregnancy. Physiological Genomics, 2018, 50, 590-604.	1.0	26
62	Impact of vasopressin receptors on regulation of immune response in preeclampsia. Proceedings in Obstetrics and Gynecology, 2018, 8, 1-2.	0.1	0
63	AT _{1A} Receptors on Vasopressinâ€Producing Cells are Important for Vasopressin Secretion but not Blood Pressure Responses to Chronic Intracerebroventricular Angiotensin in Mice. FASEB Journal, 2018, 32, 598.3.	0.2	0
64	Reduced Placental Expression of Regulator of Gâ€Protein Signalingâ€⊋ (RGS2) and Preeclampsia. FASEB Journal, 2018, 32, 911.6.	0.2	0
65	Vasopressin infusion throughout pregnancy causes placental pathology in mice consistent with preeclampsia. FASEB Journal, 2018, 32, 676.11.	0.2	0
66	Comprehensive Assessments of Energy Balance in Mice. Methods in Molecular Biology, 2017, 1614, 123-146.	0.4	34
67	Evidence for intraventricular secretion of angiotensinogen and angiotensin by the subfornical organ using transgenic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R973-R981.	0.9	11
68	The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Current Hypertension Reports, 2017, 19, 27.	1.5	42
69	MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nature Communications, 2017, 8, 713.	5.8	59
70	Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiological Genomics, 2017, 49, 722-732.	1.0	20
71	Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism. Hypertension, 2017, 70, 990-997.	1.3	18
72	Angiotensin AT1A receptors on leptin receptor–expressing cells control resting metabolism. Journal of Clinical Investigation, 2017, 127, 1414-1424.	3.9	59

#	Article	IF	CITATIONS
73	The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane. PLoS Genetics, 2016, 12, e1005890.	1.5	97
74	Introduction to the American Heart Association's Hypertension Strategically Focused Research Network. Hypertension, 2016, 67, 674-680.	1.3	10
75	Breaking a Mother's Heart. Hypertension, 2016, 67, 1119-1120.	1.3	4
76	Suppression of Resting Metabolism by the Angiotensin AT 2 Receptor. Cell Reports, 2016, 16, 1548-1560.	2.9	36
77	mTORC1 Signaling Contributes to Drinking But Not Blood Pressure Responses to Brain Angiotensin II. Endocrinology, 2016, 157, 3140-3148.	1.4	10
78	Obesity alters immune and metabolic profiles: New insight from obeseâ€resistant mice on highâ€fat diet. Obesity, 2016, 24, 2140-2149.	1.5	53
79	Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension, 2016, 68, 1385-1392.	1.3	43
80	Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator–Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2016, 67, 214-222.	1.3	24
81	Abstract P323: Arginine Vasopressin and Indoleamine 2,3 Dioxygenase: The Early Immunovascular Interface in Preeclampsia. Hypertension, 2016, 68, .	1.3	Ο
82	Abstract 033: Differential Vasopressin Receptor Expression on CD4+ T Cells from Mouse and Human Preeclamptic Pregnancies. Hypertension, 2016, 68, .	1.3	0
83	Pregnant mice lacking indoleamine 2,3-dioxygenase exhibit preeclampsia phenotypes. Physiological Reports, 2015, 3, e12257.	0.7	65
84	Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System. Scientific Reports, 2015, 5, 11123.	1.6	27
85	Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R238-R249.	0.9	76
86	Heat acclimation and thirst in rats. Physiological Reports, 2015, 3, e12642.	0.7	6
87	Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine, 2015, 2, 1725-1734.	2.7	116
88	Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1463-R1473.	0.9	27
89	Brain Endoplasmic Reticulum Stress Mechanistically Distinguishes the Saline-Intake and Hypertensive Response to Deoxycorticosterone Acetate–Salt. Hypertension, 2015, 65, 1341-1348.	1.3	15
90	Vasopressin: the missing link for preeclampsia?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1062-R1064.	0.9	34

#	Article	IF	CITATIONS
91	Control of Energy Balance by the Brain Renin-Angiotensin System. Current Hypertension Reports, 2015, 17, 38.	1.5	24
92	Direct Pro-Inflammatory Effects of Prorenin on Microglia. PLoS ONE, 2014, 9, e92937.	1.1	70
93	Role of Vascular Smooth Muscle PPARÎ ³ in Regulating AT1 Receptor Signaling and Angiotensin II-Dependent Hypertension. PLoS ONE, 2014, 9, e103786.	1.1	10
94	Activity of Protein Kinase C-α Within the Subfornical Organ Is Necessary for Fluid Intake in Response to Brain Angiotensin. Hypertension, 2014, 64, 141-148.	1.3	20
95	Another Reason to Eat Your Greens. Hypertension, 2014, 64, 1182-1183.	1.3	4
96	Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension. Hypertension, 2014, 63, 316-323.	1.3	88
97	Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Molecular Metabolism, 2014, 3, 460-464.	3.0	35
98	A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 699-708.	1.3	39
99	Ablation of the GNB3 gene in mice does not affect body weight, metabolism or blood pressure, but causes bradycardia. Cellular Signalling, 2014, 26, 2514-2520.	1.7	14
100	Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R376-R386.	0.9	20
101	Vasopressin in Preeclampsia. Hypertension, 2014, 64, 852-859.	1.3	106
102	Abstract 286: Immune Dysfunction in a Vasopressin-Induced Mouse Model of Preeclampsia. Hypertension, 2014, 64, .	1.3	0
103	Abstract 091: Chronic Vasopressin Infusion: A Novel, Clinically Significant, and <i>Pregnancy-Specific</i> Mouse Model of Preeclampsia. Hypertension, 2014, 64, .	1.3	0
104	Metabolic rate regulation by the renin–angiotensin system: brain vs. body. Pflugers Archiv European Journal of Physiology, 2013, 465, 167-175.	1.3	26
105	Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R818-R828.	0.9	59
106	Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E916-E924.	1.8	35
107	Angiotensin Type 1a Receptors in the Subfornical Organ Are Required for Deoxycorticosterone Acetate-Salt Hypertension. Hypertension, 2013, 61, 716-722.	1.3	56
108	Regulation of adipose thermogenesis by Epidermal Growth Factor and angiotensin AT2 receptor activation. FASEB Journal, 2013, 27, 696.1.	0.2	0

#	Article	IF	CITATIONS
109	Direct calorimetry exposes inadequacies of respirometry in the measurement of resting metabolic rate. FASEB Journal, 2013, 27, 1202.26.	0.2	Ο
110	Deoxycorticosterone acetate (DOCA)â€salt exacerbates hypertension and vascular dysfunction in mice expressing dominant negative Peroxisome Proliferatorâ€Activated Receptorâ€gamma (PPARG) in smooth muscle. FASEB Journal, 2013, 27, 708.10.	0.2	0
111	Glycemic control by the brain reninâ€angiotensin system: Role for peripheral AT2 receptors. FASEB Journal, 2013, 27, 1120.2.	0.2	0
112	A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H197-H206.	1.5	105
113	Editorial Focus: A fat contribution to RAS activation and blood pressure control: evidence from angiotensinogen conditional null mice. Focus on: "Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice.†American lournal of Physiology - Regulatory Integrative and Comparative Physiology. 2012. 302. R242-R243.	0.9	0
114	The Adipose/Circulating Renin-Angiotensin System Cross-Talk Enters a New Dimension. Hypertension, 2012, 60, 1389-1390.	1.3	10
115	PPARÎ ³ Regulates Resistance Vessel Tone Through a Mechanism Involving RGS5-Mediated Control of Protein Kinase C and BKCa Channel Activity. Circulation Research, 2012, 111, 1446-1458.	2.0	56
116	Cullin-3 Regulates Vascular Smooth Muscle Function and Arterial Blood Pressure via PPARÎ ³ and RhoA/Rho-Kinase. Cell Metabolism, 2012, 16, 462-472.	7.2	93
117	Endoplasmic Reticulum Stress in Cardiovascular and Metabolic Control during DOCA alt Treatment. FASEB Journal, 2012, 26, 703.22.	0.2	0
118	Angiotensinergic Signaling in the Brain Mediates Metabolic Effects of Deoxycorticosterone (DOCA)-Salt in C57 Mice. Hypertension, 2011, 57, 600-607.	1.3	89
119	Neuron- or glial-specific ablation of secreted renin does not affect renal renin, baseline arterial pressure, or metabolism. Physiological Genomics, 2011, 43, 286-294.	1.0	22
120	Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1067-R1077.	0.9	76
121	Cardiovascular Consequences of Genetic Variation at â^'6/235 in Human Angiotensinogen Using "Humanized―Gene-Targeted Mice. Hypertension, 2010, 56, 981-987.	1.3	9
122	The Brain Renin-Angiotensin System Controls Divergent Efferent Mechanisms to Regulate Fluid and Energy Balance. Cell Metabolism, 2010, 12, 431-442.	7.2	140
123	Preservation of Intracellular Renin Expression Is Insufficient to Compensate for Genetic Loss of Secreted Renin. Hypertension, 2009, 54, 1240-1247.	1.3	34
124	<i>PPARÎ³ differentially regulates energy substrate handling in brown vs. white adipose</i> : focus on "The PPARÎ ³ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake― American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1325-R1326.	0.9	2
125	Angiotensin-(1-7) as an antihypertensive, antifibrotic target. Current Hypertension Reports, 2008, 10, 227-232.	1.5	37
126	Cardiac Overexpression of Angiotensin Converting Enzyme 2 Protects the Heart From Ischemia-Induced Pathophysiology. Hypertension, 2008, 51, 712-718.	1.3	138

#	Article	IF	CITATIONS
127	An Intracellular Renin-Angiotensin System in Neurons: Fact, Hypothesis, or Fantasy. Physiology, 2008, 23, 187-193.	1.6	153
128	Potentiation of the antihypertensive action of losartan by peripheral overexpression of the ANG II type 2 receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H727-H735.	1.5	25
129	ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clinical Science, 2007, 113, 357-364.	1.8	89
130	Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H736-H742.	1.5	309
131	Angiotensinâ€(1–7) prevents cardiac remodeling during angiotensin Ilâ€induced hypertension. FASEB Journal, 2007, 21, A896.	0.2	0
132	Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2417-H2423.	1.5	182
133	Alterations in aortic vascular reactivity to angiotensin 1–7 in 17-β-estradiol-treated female SD rats. Regulatory Peptides, 2006, 133, 62-67.	1.9	11
134	Angiotensinâ€converting enzyme 2 as a novel target for gene therapy for hypertension. Experimental Physiology, 2005, 90, 299-305.	0.9	34
135	Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Experimental Physiology, 2005, 90, 783-790.	0.9	214
136	Thermal dehydration-induced thirst in lithium-treated rats. Pharmacology Biochemistry and Behavior, 2003, 75, 341-347.	1.3	3