List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2267773/publications.pdf Version: 2024-02-01

	87723	106150
4,872	38	65
citations	h-index	g-index
113	113	4850
docs citations	times ranked	citing authors
	4,872 citations 113 docs citations	4,872 38 citations h-index 113 113 docs citations 113 times ranked

SHADEEL KONC

#	Article	IF	CITATIONS
1	Black-carbon absorption enhancement in the atmosphere determined by particle mixingÂstate. Nature Geoscience, 2017, 10, 184-188.	5.4	303
2	Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environmental Pollution, 2012, 170, 161-168.	3.7	216
3	A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials, 2010, 183, 70-80.	6.5	212
4	Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Science of the Total Environment, 2020, 739, 140000.	3.9	173
5	Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Science of the Total Environment, 2010, 408, 4681-4694.	3.9	149
6	Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. Science of the Total Environment, 2015, 520, 59-72.	3.9	148
7	Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmospheric Chemistry and Physics, 2018, 18, 4567-4595.	1.9	135
8	A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International, 2021, 157, 106818.	4.8	126
9	Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research, 2014, 149, 217-229.	1.8	122
10	Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 2011, 98, 280-290.	2.3	115
11	Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Science of the Total Environment, 2020, 703, 135505.	3.9	111
12	Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. Journal of Environmental Monitoring, 2012, 14, 791.	2.1	103
13	A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. Journal of Environmental Sciences, 2010, 22, 1364-1373.	3.2	101
14	Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China. Atmospheric Environment, 2013, 74, 199-208.	1.9	100
15	Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Science of the Total Environment, 2015, 515-516, 101-108.	3.9	100
16	Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmospheric Environment, 2011, 45, 3777-3785.	1.9	91
17	Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmospheric Environment, 2011, 45, 5351-5365.	1.9	89
18	Importance of meteorology in air pollution events during the city lockdown for COVID-19 in Hubei Province, Central China. Science of the Total Environment, 2021, 754, 142227.	3.9	82

#	Article	IF	CITATIONS
19	Distribution and sources of polycyclic aromatic hydrocarbons in size-differentiated re-suspended dust on building surfaces in an oilfield city, China. Atmospheric Environment, 2012, 55, 7-16.	1.9	74
20	Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Quality, Atmosphere and Health, 2015, 8, 347-357.	1.5	73
21	Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from stationary sources based on dilution sampling. Atmospheric Environment, 2013, 77, 155-165.	1.9	69
22	Source apportionment of volatile organic compounds: Implications to reactivity, ozone formation, and secondary organic aerosol potential. Atmospheric Research, 2021, 249, 105344.	1.8	69
23	Characterization of Elemental Species in PM2.5 Samples Collected in Four Cities of Northeast China. Water, Air, and Soil Pollution, 2010, 209, 15-28.	1.1	68
24	Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmospheric Chemistry and Physics, 2018, 18, 11623-11646.	1.9	68
25	Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city. Atmospheric Environment, 2011, 45, 4192-4204.	1.9	66
26	Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste. Scientific Reports, 2017, 7, 5047.	1.6	66
27	The impacts of pollution control measures on PM2.5 reduction: Insights of chemical composition, source variation and health risk. Atmospheric Environment, 2019, 197, 103-117.	1.9	63
28	The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environment International, 2020, 142, 105812.	4.8	62
29	Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls. Environment International, 2018, 114, 266-279.	4.8	61
30	Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,964.	1.2	61
31	Intra-regional transport of black carbon between the south edge of the North China Plain and central China during winter haze episodes. Atmospheric Chemistry and Physics, 2019, 19, 4499-4516.	1.9	58
32	Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing. Atmospheric Research, 2016, 174-175, 85-96.	1.8	55
33	Regional and local new particle formation events observed in the Yangtze River Delta region, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2389-2402.	1.2	48
34	Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation. Science of the Total Environment, 2021, 758, 143710.	3.9	48
35	Ion chemistry for atmospheric size-segregated aerosol and depositions at an offshore site of Yangtze River Delta region, China. Atmospheric Research, 2014, 147-148, 205-226.	1.8	47
36	Characterization and Source Identification of PM10-bound Polycyclic Aromatic Hydrocarbons in Urban Air of Tianjin, China. Aerosol and Air Quality Research, 2010, 10, 507-518.	0.9	47

#	Article	IF	CITATIONS
37	Size-Related Physical Properties of Black Carbon in the Lower Atmosphere over Beijing and Europe. Environmental Science & Technology, 2019, 53, 11112-11121.	4.6	45
38	Updated emission inventories of power plants in simulating air quality during haze periods over East China. Atmospheric Chemistry and Physics, 2018, 18, 2065-2079.	1.9	41
39	Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. Atmospheric Environment, 2019, 213, 25-36.	1.9	40
40	First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 2021, 55, 1497-1507.	4.6	40
41	Vertical characteristics of black carbon physical properties over Beijing region in warm and cold seasons. Atmospheric Environment, 2019, 213, 296-310.	1.9	38
42	Vertical evolution of black carbon characteristics and heating rate during a haze event in Beijing winter. Science of the Total Environment, 2020, 709, 136251.	3.9	36
43	Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities. Science of the Total Environment, 2021, 762, 143075.	3.9	34
44	A land use regression model incorporating data on industrial point source pollution. Journal of Environmental Sciences, 2012, 24, 1251-1258.	3.2	33
45	Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmospheric Environment, 2014, 98, 242-252.	1.9	33
46	Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. Journal of Environmental Monitoring, 2011, 13, 2597.	2.1	31
47	A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mi>c</mml:mi> -Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers. Complexity, 2018, 2018, 1-11.</mml:math 	0.9	31
48	Size-resolved chemical composition of atmospheric particles during a straw burning period at Mt. Huang (the Yellow Mountain) of China. Atmospheric Environment, 2014, 84, 380-389.	1.9	29
49	C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China. Environmental Pollution, 2017, 230, 12-21.	3.7	29
50	Observed Interactions Between Black Carbon and Hydrometeor During Wet Scavenging in Mixedâ€₽hase Clouds. Geophysical Research Letters, 2019, 46, 8453-8463.	1.5	29
51	A 5.5-year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends. Atmospheric Environment, 2020, 232, 117581.	1.9	29
52	Emission and simulation of primary fine and submicron particles and water-soluble ions from domestic coal combustion in China. Atmospheric Environment, 2020, 224, 117308.	1.9	29
53	Comparison of inorganic chemical compositions of atmospheric TSP, PM 10 and PM 2.5 in northern and southern Chinese coastal cities. Journal of Environmental Sciences, 2017, 55, 339-353.	3.2	28
54	Temperature dependence of source profiles for volatile organic compounds from typical volatile emission sources. Science of the Total Environment, 2021, 751, 141741.	3.9	28

#	Article	IF	CITATIONS
55	Co-benefits of reducing PM2.5 and improving visibility by COVID-19 lockdown in Wuhan. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	27
56	Concentrations, spatial distributions and congener profiles of polychlorinated biphenyls in soils from a coastal city – Tianjin, China. Chemosphere, 2011, 85, 494-501.	4.2	25
57	Size-segregated emission factors and health risks of PAHs from residential coal flaming/smoldering combustion. Environmental Science and Pollution Research, 2019, 26, 31793-31803.	2.7	24
58	Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Science of the Total Environment, 2017, 575, 309-320.	3.9	23
59	Evolution of Aerosol Optical Properties from Wood Smoke in Real Atmosphere Influenced by Burning Phase and Solar Radiation. Environmental Science & Technology, 2021, 55, 5677-5688.	4.6	22
60	Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over Central China. Science of the Total Environment, 2022, 808, 151951.	3.9	22
61	Size-segregated carbonaceous aerosols emission from typical vehicles and potential depositions in the human respiratory system. Environmental Pollution, 2020, 264, 114705.	3.7	21
62	Sub-type source profiles of fine particles for fugitive dust and accumulative health risks of heavy metals: a case study in a fast-developing city of China. Environmental Science and Pollution Research, 2020, 27, 16554-16573.	2.7	21
63	Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons in urban, suburban, and rural ambient air, central China during summer harvest. Ecotoxicology and Environmental Safety, 2020, 191, 110219.	2.9	21
64	Effectiveness of emission control in reducing PM _{2.5} pollution in central China during winter haze episodes under various potential synoptic controls. Atmospheric Chemistry and Physics, 2021, 21, 3143-3162.	1.9	20
65	Similarities and Differences in PM2.5, PM10 and TSP Chemical Profiles of Fugitive Dust Sources in a Coastal Oilfield City in China. Aerosol and Air Quality Research, 2014, 14, 2017-2028.	0.9	20
66	Seasonal variation analysis of atmospheric CH4, N2O and CO2 in Tianjin offshore area. Science China Earth Sciences, 2010, 53, 1205-1215.	2.3	19
67	Pyrolysis Routine of Organics and Parameter Optimization of Vacuum Gasification for Recovering Hazardous Waste Toner. ACS Sustainable Chemistry and Engineering, 2017, 5, 10038-10045.	3.2	19
68	Efficient Vertical Transport of Black Carbon in the Planetary Boundary Layer. Geophysical Research Letters, 2020, 47, e2020GL088858.	1.5	19
69	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of the Total Environment, 2020, 703, 134475.	3.9	18
70	Black Carbon Emission and Wet Scavenging From Surface to the Top of Boundary Layer Over Beijing Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033096.	1.2	18
71	Chemical compositions and sources of atmospheric PM10 in heating, non-heating and sand periods at a coal-based city in northeastern china. Journal of Environmental Monitoring, 2012, 14, 852.	2.1	17
72	Fine particles from village air in northern China in winter: Large contribution of primary organic aerosols from residential solid fuel burning. Environmental Pollution, 2021, 272, 116420.	3.7	17

#	Article	IF	CITATIONS
73	Chemical Characterizations of PM10 Profiles for Major Emission Sources in Xining, Northwestern China. Aerosol and Air Quality Research, 2014, 14, 1017-1027.	0.9	16
74	Chemical composition, mass closure and sources of atmospheric PM10 from industrial sites in Shenzhen, China. Journal of Environmental Sciences, 2013, 25, 1626-1635.	3.2	15
75	Enhanced heating rate of black carbon above the planetary boundary layer over megacities in summertime. Environmental Research Letters, 2019, 14, 124003.	2.2	14
76	Ambient marine shipping emissions determined by vessel operation mode along the East China Sea. Science of the Total Environment, 2021, 769, 144713.	3.9	14
77	Quantifying the Fractal Dimension and Morphology of Individual Atmospheric Soot Aggregates. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	14
78	On the local anthropogenic source diversities and transboundary transport for urban agglomeration ozone mitigation. Atmospheric Environment, 2021, 245, 118005.	1.9	13
79	Emission and spatialized health risks for trace elements from domestic coal burning in China. Environment International, 2022, 158, 107001.	4.8	13
80	Changes in the Distribution Pattern of PM2.5 Pollution over Central China. Remote Sensing, 2021, 13, 4855.	1.8	13
81	Subway construction activity influence on polycyclic aromatic hydrocarbons in fine particles: Comparison with a background mountainous site. Atmospheric Research, 2015, 161-162, 82-92.	1.8	12
82	Initial Cost Barrier of Ammonia Control in Central China. Geophysical Research Letters, 2019, 46, 14175-14184.	1.5	12
83	Benefits of refined NH3 emission controls on PM2.5 mitigation in Central China. Science of the Total Environment, 2022, 814, 151957.	3.9	12
84	Neglected biomass burning emissions of air pollutants in China-views from the corncob burning test, emission estimation, and simulations. Atmospheric Environment, 2022, 278, 119082.	1.9	12
85	Real-time emission and stage-dependent emission factors/ratios of specific volatile organic compounds from residential biomass combustion in China. Atmospheric Research, 2021, 248, 105189.	1.8	11
86	Source profiles and emission factors of organic and inorganic species in fine particles emitted from the ultra-low emission power plant and typical industries. Science of the Total Environment, 2021, 789, 147966.	3.9	11
87	On-road emissions of fine particles and associated chemical components from motor vehicles in Wuhan, China. Environmental Research, 2022, 210, 112900.	3.7	11
88	Variation of airborne DNA mass ratio and fungal diversity in fine particles with day-night difference during an entire winter haze evolution process of Central China. Science of the Total Environment, 2019, 694, 133802.	3.9	10
89	Closure Investigation on Cloud Condensation Nuclei Ability of Processed Anthropogenic Aerosols. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032680.	1.2	10
90	Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM2.5 reduction in Central China. Science of the Total Environment, 2022, 824, 153708.	3.9	9

#	Article	IF	CITATIONS
91	Secondary inorganic aerosol dominated the light absorption enhancement of black carbon aerosol in Wuhan, Central China. Atmospheric Environment, 2022, 287, 119288.	1.9	9
92	Evolution of Organic Aerosol From Wood Smoke Influenced by Burning Phase and Solar Radiation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034534.	1.2	8
93	Direct Quantification of Droplet Activation of Ambient Black Carbon Under Water Supersaturation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034649.	1.2	8
94	Regulation of Synoptic Circulation in Regional PM _{2.5} Transport for Heavy Air Pollution: Study of 5â€year Observation Over Central China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
95	Characterization of reactive photoinduced species in rainwater. Environmental Science and Pollution Research, 2018, 25, 36368-36380.	2.7	6
96	A method to dynamically constrain black carbon aerosol sources with online monitored potassium. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	6
97	Reduced volatility of aerosols from surface emissions to the top of the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14749-14760.	1.9	6
98	Hourly emission estimation of black carbon and brown carbon absorption from domestic coal burning in China. Science of the Total Environment, 2022, 814, 151950.	3.9	6
99	The toxicity emissions and spatialized health risks of heavy metals in PM2.5 from biomass fuels burning. Atmospheric Environment, 2022, 284, 119178.	1.9	6
100	Evolution of source attributed organic aerosols and gases in a megacity of central China. Atmospheric Chemistry and Physics, 2022, 22, 6937-6951.	1.9	6
101	Impact of Inter-Regional Transport in a Low-Emission Scenario on PM2.5 in Hubei Province, Central China. Atmosphere, 2021, 12, 250.	1.0	5
102	Aggravation effect of regional transport on wintertime PM2.5 over the middle reaches of the Yangtze River under China's air pollutant emission reduction process. Atmospheric Pollution Research, 2021, 12, 101111.	1.8	5
103	Optical properties closure and sources of size-resolved aerosol in Nanjing around summer harvest period. Atmospheric Environment, 2021, 244, 118017.	1.9	4
104	An overlooked source of nanosized lead particles in the atmosphere: Residential honeycomb briquette combustion. Journal of Hazardous Materials, 2022, 436, 129289.	6.5	3
105	Impact of Dilution Ratio and Burning Conditions on the Number Size Distribution and Size-Dependent Mixing State of Primary Particles from Domestic Solid Fuel Burning. Environmental Science and Technology Letters, 2022, 9, 611-617.	3.9	3
106	Contrasting resistance of polycyclic aromatic hydrocarbons to atmospheric oxidation influenced by burning conditions. Environmental Research, 2022, 211, 113107.	3.7	1
107	Dwindling aromatic compounds in fine aerosols from chunk coal to honeycomb briquette combustion. Science of the Total Environment, 2022, 838, 155971.	3.9	1
108	Variation of pollution sources and health effects on air pollution before and during COVID-19 pandemic in Linfen, Fenwei Plain. Environmental Research, 2022, 213, 113719.	3.7	1

#	Article	IF	CITATIONS
109	Trend reversal from source region to remote tropospheric NO2 columns. Environmental Science and Pollution Research, 2021, 29, 15763.	2.7	0