List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2267428/publications.pdf Version: 2024-02-01

TAREDIL KEN SUZURI

#	Article	IF	CITATIONS
1	Rapid-then-slow migration reproduces mass distribution of TRAPPIST-1 system. Astronomy and Astrophysics, 2022, 658, A184.	5.1	4
2	Role of Longitudinal Waves in Alfvén-wave-driven Solar Wind. Astrophysical Journal, 2022, 931, 37.	4.5	5
3	Photoevaporative Dispersal of Protoplanetary Disks around Evolving Intermediate-mass Stars. Astrophysical Journal, 2021, 909, 109.	4.5	17
4	New Growth Mechanism of Dust Grains in Protoplanetary Disks with Magnetically Driven Disk Winds. Astrophysical Journal, 2021, 909, 75.	4.5	14
5	Collisional Growth and Fragmentation of Dust Aggregates with Low Mass Ratios. I. Critical Collision Velocity for Water Ice. Astrophysical Journal, 2021, 915, 22.	4.5	22
6	Coronal properties of low-mass Population III stars and the radiative feedback in the early universe. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1284-1294.	4.4	4
7	Hot grain dynamics by electric charging and magnetic trapping in debris disks. Planetary and Space Science, 2020, 183, 104581.	1.7	12
8	Dispersal of protoplanetary discs by the combination of magnetically driven and photoevaporative winds. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3849-3858.	4.4	34
9	Alfvén-wave-driven Magnetic Rotator Winds from Low-mass Stars. I. Rotation Dependences of Magnetic Braking and Mass-loss Rate. Astrophysical Journal, 2020, 896, 123.	4.5	30
10	Giant Protostellar Flares: Accretion-driven Accumulation and Reconnection-driven Ejection of Magnetic Flux in Protostars. Astrophysical Journal Letters, 2019, 878, L10.	8.3	17
11	Alfvén Wave-driven Wind from RGB and AGB Stars. Astrophysical Journal, 2019, 879, 77.	4.5	9
12	Three-dimensional Simulation of the Fast Solar Wind Driven by Compressible Magnetohydrodynamic Turbulence. Astrophysical Journal Letters, 2019, 880, L2.	8.3	57
13	Magnetohydrodynamics in a cylindrical shearing box. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	5
14	The formation of rings and gaps in wind-launching non-ideal MHD discs: three-dimensional simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 107-124.	4.4	38
15	Coronae of Zero/Low-metal, Low-mass Stars. Astrophysical Journal, 2019, 885, 164.	4.5	8
16	A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star. Astrophysical Journal, 2018, 857, 4.	4.5	32
17	A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes. Astrophysical Journal, 2018, 853, 190.	4.5	47
18	3D simulations of accretion onto a star: Fast funnel-wall accretion. Proceedings of the International Astronomical Union, 2018, 14, 138-138.	0.0	0

#	Article	IF	CITATIONS
19	Magnetic activity in the Galactic Centre region – fast downflows along rising magnetic loops. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5629-5638.	4.4	5
20	Metal pollution of low-mass Population III stars through accretion of interstellar objects like â€~Oumuamua. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	12
21	Formation of close-in super-Earths in evolving protoplanetary disks due to disk winds. Astronomy and Astrophysics, 2018, 615, A63.	5.1	64
22	Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals. Astronomy and Astrophysics, 2018, 612, L5.	5.1	19
23	Frequency-dependent Alfvén-wave Propagation in the Solar Wind: Onset and Suppression of Parametric Decay Instability. Astrophysical Journal, 2018, 860, 17.	4.5	41
24	Stellar winds and coronae of low-mass PopulationÂll/III stars. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	20
25	Recovery of urban socio-technical systems after disaster: quasi-optimality of reactive decision-making based planning. EURO Journal on Decision Processes, 2017, 5, 65-77.	2.7	2
26	A Theoretical Model of X-Ray Jets from Young Stellar Objects. Astrophysical Journal, 2017, 847, 46.	4.5	6
27	Effects of global gas flows on type I migration. Astronomy and Astrophysics, 2017, 608, A74.	5.1	9
28	Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation. Proceedings of the International Astronomical Union, 2016, 11, 137-140.	0.0	0
29	Vertical flows and structures excited by magnetic activity in the Galactic center region. Proceedings of the International Astronomical Union, 2016, 11, 220-221.	0.0	0
30	Evolution of protoplanetary discs with magnetically driven disc winds. Astronomy and Astrophysics, 2016, 596, A74.	5.1	134
31	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	61
32	DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES. Astrophysical Journal, 2016, 821, 3.	4.5	56
33	STOCHASTIC PARTICLE ACCELERATION IN TURBULENCE GENERATED BY MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2016, 822, 88.	4.5	30
34	Effects of axions on nucleosynthesis in massive stars. Physical Review D, 2015, 92, .	4.7	9
35	ATMOSPHERIC ESCAPE BY MAGNETICALLY DRIVEN WIND FROM GASEOUS PLANETS. II. EFFECTS OF MAGNETIC DIFFUSION. Astrophysical Journal, 2015, 809, 125.	4.5	4
36	Stochastic non-circular motion and outflows driven by magnetic activity in the Galactic bulge region. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3049-3059.	4.4	18

#	Article	IF	CITATIONS
37	Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets. Astronomy and Astrophysics, 2015, 579, A65.	5.1	26
38	DRIVING DISK WINDS AND HEATING HOT CORONAE BY MRI TURBULENCE. Astrophysical Journal, 2014, 780, 46.	4.5	10
39	Connecting the Sun and the solar wind: the self-consistent transition of heating mechanisms. Monthly Notices of the Royal Astronomical Society, 2014, 440, 971-986.	4.4	71
40	THE EVOLUTION OF HIGH-TEMPERATURE PLASMA IN MAGNETAR MAGNETOSPHERES AND ITS IMPLICATIONS FOR GIANT FLARES. Astrophysical Journal, 2014, 787, 84.	4.5	5
41	ATMOSPHERIC ESCAPE BY MAGNETICALLY DRIVEN WIND FROM GASEOUS PLANETS. Astrophysical Journal, 2014, 792, 18.	4.5	38
42	MAGNETOHYDRODYNAMIC SIMULATIONS OF GLOBAL ACCRETION DISKS WITH VERTICAL MAGNETIC FIELDS. Astrophysical Journal, 2014, 784, 121.	4.5	96
43	Connecting the photosphere and the solar wind. , 2013, , .		0
44	Saturation of StellarWinds from Young Suns. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	67
45	Waves and Turbulences in Solar and Stellar Atmospheres and Winds. Plasma and Fusion Research, 2013, 8, 2401129-2401129.	0.7	0
46	Solar wind and its evolution. Earth, Planets and Space, 2012, 64, 201-206.	2.5	5
47	CONNECTING THE SUN AND THE SOLAR WIND: THE FIRST 2.5-DIMENSIONAL SELF-CONSISTENT MHD SIMULATION UNDER THE ALFVÉN WAVE SCENARIO. Astrophysical Journal, 2012, 749, 8.	4.5	87
48	Self-consistent Simulations of Alfvén Wave Driven Winds from the Sun and Stars. Space Science Reviews, 2011, 158, 339-363.	8.1	18
49	PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION. Astrophysical Journal, 2010, 718, 1289-1304.	4.5	151
50	TWO-DIMENSIONAL STUDY OF THE PROPAGATION OF PLANETARY WAKE AND THE INDICATION OF GAP OPENING IN AN INVISCID PROTOPLANETARY DISK. Astrophysical Journal, 2010, 724, 448-463.	4.5	29
51	THERMAL RESPONSE OF A SOLAR-LIKE ATMOSPHERE TO AN ELECTRON BEAM FROM A HOT JUPITER: A NUMERICAL EXPERIMENT. Astrophysical Journal, 2009, 705, 1189-1195.	4.5	8
52	Dispersal of Protoplanetary Disks by MHD Turbulence-Driven Disk Winds. , 2009, , .		0
53	DISK WINDS DRIVEN BY MAGNETOROTATIONAL INSTABILITY AND DISPERSAL OF PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 691, L49-L54.	4.5	213
54	Evolution of stellar winds from the Sun to red giants. Proceedings of the International Astronomical Union, 2008, 4, 589-599.	0.0	0

#	Article	IF	CITATIONS
55	The Magnetic Landscape of the Sun's Polar Region. Astrophysical Journal, 2008, 688, 1374-1381.	4.5	170
56	Structured Red Giant Winds with Magnetized Hot Bubbles and the Corona/Cool Wind Dividing Line. Astrophysical Journal, 2007, 659, 1592-1610.	4.5	63
57	Evolution of Collisionally Merged Massive Stars. Astrophysical Journal, 2007, 668, 435-448.	4.5	43
58	The Origin of Ripples in Cool Cores of Galaxy Clusters: Heating by Magnetohydrodynamic Waves?. Astrophysical Journal, 2007, 659, L1-L4.	4.5	10
59	Evolution of Alfvén wave-driven solar winds to red giants. Proceedings of the International Astronomical Union, 2007, 3, 201-207.	0.0	0
60	Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. Journal of Geophysical Research, 2006, 111, .	3.3	135
61	Forecasting Solar Wind Speeds. Astrophysical Journal, 2006, 640, L75-L78.	4.5	71
62	Light Elements Produced by Nitrogen-rich Type Ic Supernovae. AIP Conference Proceedings, 2006, , .	0.4	0
63	Alfven Wave–driven Proto–Neutron Star Winds andrâ€Process Nucleosynthesis. Astrophysical Journal, 2005, 628, 914-922.	4.5	35
64	On the Heating of Cluster Cooling Flows by Sound Waves. Astrophysical Journal, 2005, 630, L1-L4.	4.5	37
65	Making the Corona and the Fast Solar Wind: A Self-consistent Simulation for the Low-Frequency Alfvén Waves from the Photosphere to 0.3 AU. Astrophysical Journal, 2005, 632, L49-L52.	4.5	228
66	Coronal heating and acceleration of the high/low-speed solar wind by fast/slow MHD shock trains. Monthly Notices of the Royal Astronomical Society, 2004, 349, 1227-1239.	4.4	44
67	Tsunamis in Galaxy Clusters: Heating of Cool Cores by Acoustic Waves. Astrophysical Journal, 2004, 600, 650-656.	4.5	25
68	Cosmic Ray Production of 6Li by Virialisation Shocks in the Early Milky Way. Publications of the Astronomical Society of Australia, 2004, 21, 148-152.	3.4	4
69	Cosmic ray production of 6Li by structure formation shocks in the early galaxy. Nuclear Physics A, 2003, 718, 69-72.	1.5	1
70	Cosmicâ€Ray Production of6Li by Structure Formation Shocks in the Early Milky Way: A Fossil Record of Dissipative Processes during Galaxy Formation. Astrophysical Journal, 2002, 573, 168-173.	4.5	57
71	On the Heating of the Solar Corona and the Acceleration of the Lowâ€6peed Solar Wind by Acoustic Waves Generated in the Corona. Astrophysical Journal, 2002, 578, 598-609.	4.5	30
72	Abundances and Evolution of Lithium in the Galactic Halo and Disk. Astrophysical Journal, 2001, 549, 55-71.	4.5	62

#	Article	IF	CITATIONS
73	A New Model for the Evolution of Light Elements in an Inhomogeneous Galactic Halo. Astrophysical Journal, 2001, 549, 303-319.	4.5	36
74	Evolution of Light Elements in an Inhomogeneous Galactic Halo. , 2001, , 121-123.		0
75	Evolution of 6LiBeB in Inhomogeneous Early Galaxy. Symposium - International Astronomical Union, 2000, 198, 565-566.	0.1	Ο
76	The Light Elements Be and B as Stellar Chronometers in the Early Galaxy. Symposium - International Astronomical Union, 2000, 198, 425-431.	0.1	8
77	Primordial Lithium Abundance as a Stringent Constraint on the Baryonic Content of the Universe. Astrophysical Journal, 2000, 540, 99-103.	4.5	28
78	Evolution of Beryllium and Boron in the Inhomogeneous Early Galaxy. Astrophysical Journal, 1999, 522, L125-L128.	4.5	28