
Aamir W Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2267358/publications.pdf Version: 2024-02-01

Δαμιό \λ/ Κμανι

#	Article	IF	CITATIONS
1	Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Journal of Advanced Research, 2022, 42, 315-329.	4.4	20
2	QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity, 2022, 128, 411-419.	1.2	9
3	Genetic variation in <i>CaTIFY4b</i> contributes to drought adaptation in chickpea. Plant Biotechnology Journal, 2022, 20, 1701-1715.	4.1	23
4	A diagnostic marker kit for Fusarium wilt and sterility mosaic diseases resistance in pigeonpea. Theoretical and Applied Genetics, 2021, 134, 367-379.	1.8	10
5	MutMap Approach Enables Rapid Identification of Candidate Genes and Development of Markers Associated With Early Flowering and Enhanced Seed Size in Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2021, 12, 688694.	1.7	7
6	Characterization of heterosis and genomic predictionâ€based establishment of heterotic patterns for developing better hybrids in pigeonpea. Plant Genome, 2021, 14, e20125.	1.6	6
7	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	13.7	106
8	Wholeâ€genome resequencingâ€based <scp>QTL</scp> â€seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnology Journal, 2020, 18, 992-1003.	4.1	60
9	Genomeâ€wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant Biotechnology Journal, 2020, 18, 1697-1710.	4.1	38
10	Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends in Plant Science, 2020, 25, 148-158.	4.3	177
11	Superior haplotypes for haplotypeâ€based breeding for drought tolerance in pigeonpea (<i>Cajanus) Tj ETQq1 I</i>	0.784314	l rgBT /Over
12	<i>Arachis hypogaea</i> gene expression atlas for <i>fastigiata</i> subspecies of cultivated groundnut to accelerate functional and translational genomics applications. Plant Biotechnology Journal, 2020, 18, 2187-2200.	4.1	38
13	Trait associations in the pangenome of pigeon pea (<i>Cajanus cajan</i>). Plant Biotechnology Journal, 2020, 18, 1946-1954.	4.1	79
14	Nextâ€generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 2356-2369.	4.1	41
15	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	9.4	219
16	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	9.4	398
17	Discovery of genomic regions and candidate genes controlling shelling percentage using <scp>QTL</scp> â€seq approach in cultivated peanut (<i>Arachis hypogaea</i> L.). Plant Biotechnology Journal, 2019, 17, 1248-1260.	4.1	51
18	Integrated transcriptome, small <scp>RNA</scp> and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnology Journal, 2019, 17, 914-931.	4.1	66

AAMIR W KHAN

#	Article	IF	CITATIONS
19	Development and Application of Highâ€Density Axiom <i>Cajanus</i> SNP Array with 56K SNPs to Understand the Genome Architecture of Released Cultivars and Founder Genotypes. Plant Genome, 2018, 11, 180005.	1.6	35
20	Molecular Mapping of QTLs for Heat Tolerance in Chickpea. International Journal of Molecular Sciences, 2018, 19, 2166.	1.8	73
21	Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics, 2017, 49, 1082-1088.	9.4	218
22	Indelâ€seq: a fastâ€forward genetics approach for identification of traitâ€associated putative candidate genomic regions and its application in pigeonpea (<i>Cajanus cajan</i>). Plant Biotechnology Journal, 2017, 15, 906-914.	4.1	67
23	<scp>QTL</scp> â€seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (<i><scp>A</scp>rachis hypogaea </i> <scp>L</scp> .). Plant Biotechnology Journal, 2017, 15, 927-941.	4.1	198
24	Sequencing the Chickpea Genome. Compendium of Plant Genomes, 2017, , 117-123.	0.3	0
25	Genome-Wide Identification, Characterization, and Expression Analysis of Small RNA Biogenesis Purveyors Reveal Their Role in Regulation of Biotic Stress Responses in Three Legume Crops. Frontiers in Plant Science, 2017, 8, 488.	1.7	15
26	Molecular Mapping of Flowering Time Major Genes and QTLs in Chickpea (Cicer arietinum L.). Frontiers in Plant Science, 2017, 8, 1140.	1.7	48
27	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	4.1	177
28	Firstâ€generation HapMap in <i>Cajanus</i> spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnology Journal, 2016, 14, 1673-1681.	4.1	39
29	Genomeâ€wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnology Journal, 2016, 14, 1563-1577.	4.1	109
30	Nextâ€generation sequencing for identification of candidate genes for <i>Fusarium</i> wilt and sterility mosaic disease in pigeonpea (<i><scp>C</scp>ajanus cajan</i>). Plant Biotechnology Journal, 2016, 14, 1183-1194.	4.1	108
31	Draft genome of the peanut A-genome progenitor (<i>Arachis duranensis</i>) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6785-6790.	3.3	235
32	Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biology, 2016, 16, 10.	1.6	101
33	Association of nad7a Gene with Cytoplasmic Male Sterility in Pigeonpea. Plant Genome, 2015, 8, eplantgenome2014.11.0084.	1.6	28
34	CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav078.	1.4	22
35	Identification and Validation of Selected Universal Stress Protein Domain Containing Drought-Responsive Genes in Pigeonpea (Cajanus cajan L.). Frontiers in Plant Science, 2015, 6, 1065.	1.7	39
36	NGS-QCbox and Raspberry for Parallel, Automated and Rapid Quality Control Analysis of Large-Scale Next Generation Sequencing (Illumina) Data. PLoS ONE, 2015, 10, e0139868.	1.1	37

Aamir W Khan

#	Article	IF	CITATIONS
37	Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the â€~Reference Set' Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE, 2014, 9, e105228.	1.1	124
38	CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics, 2014, 15, 212.	1.2	33
39	A draft genome sequence of the pulse crop chickpea (<i><scp>C</scp>icer arietinum</i> ÂL.). Plant Journal, 2013, 74, 715-729.	2.8	382
40	High-Throughput SNP Discovery and Genotyping for Constructing a Saturated Linkage Map of Chickpea (Cicer arietinum L.). DNA Research, 2012, 19, 357-373.	1.5	137