## Mohammad Afzaal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/226726/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF               | CITATIONS           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1  | Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chemical Reviews, 2010, 110, 4417-4446.                                                                                                                               | 47.7             | 316                 |
| 2  | Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. Journal of<br>Materials Chemistry, 2006, 16, 1597-1602.                                                                                          | 6.7              | 229                 |
| 3  | The Chemical Vapor Deposition of Nickel Phosphide or Selenide Thin Films from a Single Precursor.<br>Journal of the American Chemical Society, 2008, 130, 2420-2421.                                                                           | 13.7             | 207                 |
| 4  | A New Route to Antimony Telluride Nanoplates from a Single-Source Precursor. Journal of the<br>American Chemical Society, 2006, 128, 3120-3121.                                                                                                | 13.7             | 133                 |
| 5  | Using coordination chemistry to develop new routes to semiconductor and other materials.<br>Coordination Chemistry Reviews, 2007, 251, 1878-1888.                                                                                              | 18.8             | 124                 |
| 6  | Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum<br>Dot/Organic Hole Conductor Heterojunctions. Journal of the American Chemical Society, 2010, 132,<br>2743-2750.                           | 13.7             | 110                 |
| 7  | The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. Journal of Materials Chemistry, 2006, 16, 2175.                                                          | 6.7              | 109                 |
| 8  | Growth of lead chalcogenide thin films using single-source precursors. Journal of Materials<br>Chemistry, 2004, 14, 1310.                                                                                                                      | 6.7              | 96                  |
| 9  | Remarkable Magneto-Optical Properties of Europium Selenide Nanoparticles with Wide Energy Gaps.<br>Journal of the American Chemical Society, 2008, 130, 5710-5715.                                                                             | 13.7             | 87                  |
| 10 | The N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M = Cd(ii) Zn(ii); R = C2H5, C4H9, C6H13, C12H25);<br>their synthesis, thermal decomposition and use to prepare of nanoparticles and nanorods of CdS.<br>Dalton Transactions, 2006, , 4499. | 3.3              | 85                  |
| 11 | Deposition of II-VI Thin Films by LP-MOCVD Using Novel Single-Source Precursors. European Journal of<br>Inorganic Chemistry, 2004, 2004, 171-177.                                                                                              | 2.0              | 79                  |
| 12 | Solid state synthesis of tin-doped ZnO at room temperature: Characterization and its enhanced gas sensing and photocatalytic properties. Journal of Hazardous Materials, 2011, 193, 194-199.                                                   | 12.4             | 78                  |
| 13 | Chemical routes to chalcogenide materials as thin films or particles with critical dimensions with the order of nanometres. Journal of Materials Chemistry, 2010, 20, 4031.                                                                    | 6.7              | 77                  |
| 14 | Metal complexes of selenophosphinates from reactions with (R2PSe)2Se: [M(R2PSe2)n] (M = ZnII, CdII,) Tj ETQ<br>2182.                                                                                                                           | 0 0 0 rgB<br>4.1 | T /Overlock I<br>75 |
| 15 | Chemical Vapor Deposition of Indium Selenide and Gallium Selenide Thin Films from Mixed<br>Alkyl/Dialkylselenophosphorylamides. Chemistry of Materials, 2003, 15, 4205-4210.                                                                   | 6.7              | 71                  |
| 16 | The single molecular precursor approach to metal telluride thin films:<br>imino-bis(diisopropylphosphine tellurides) as examples. Chemical Society Reviews, 2007, 36, 1622.                                                                    | 38.1             | 71                  |
| 17 | Novel Bimetallic Thiocarboxylate Compounds as Single-Source Precursors to Binary and Ternary<br>Metal Sulfide Materials. Chemistry of Materials, 2003, 15, 2383-2391.                                                                          | 6.7              | 70                  |
| 18 | Synthesis of ZnO Hexagonal Single-Crystal Slices with Predominant (0001) and (0001)) Facets by Poly(ethylene glycol)-Assisted Chemical Bath Deposition. Journal of the American Chemical Society, 2009, 131, 15106-15107                       | 13.7             | 69                  |

MOHAMMAD AFZAAL

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis, Structures, and Multinuclear NMR Spectra of Tin(II) and Lead(II) Complexes of<br>Tellurium-Containing Imidodiphosphinate Ligands: Preparation of Two Morphologies of Phase-Pure<br>PbTe from a Single-Source Precursor. Inorganic Chemistry, 2010, 49, 1198-1205. | 4.0  | 68        |
| 20 | The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials. Journal of Materials Chemistry, 2004, 14, 233.                                    | 6.7  | 65        |
| 21 | Selective excitation of Eu <sup>3+</sup> in the core of small β-NaGdF <sub>4</sub> nanocrystals.<br>Journal of Materials Chemistry C, 2013, 1, 801-807.                                                                                                                      | 5.5  | 65        |
| 22 | A novel method for synthesizing EuS nanocrystals from a single-source precursor under white LED irradiation. Chemical Communications, 2005, , 242.                                                                                                                           | 4.1  | 63        |
| 23 | Controlled Synthesis of Tuned Bandgap Nanodimensional Alloys of<br>PbS <sub><i>x</i></sub> Se <sub>1â°'<i>x</i></sub> . Journal of the American Chemical Society, 2011, 133,<br>5602-5609.                                                                                   | 13.7 | 59        |
| 24 | Chemical vapour deposition of II–VI semiconductor thin films using M[(TePiPr2)2N]2(M = Cd, Hg) as single-source precursors. Journal of Materials Chemistry, 2006, 16, 966-969.                                                                                               | 6.7  | 56        |
| 25 | Novel inorganic rings and materials deposition. Journal of Organometallic Chemistry, 2007, 692, 2669-2677.                                                                                                                                                                   | 1.8  | 54        |
| 26 | Preparation of zinc containing materials. New Journal of Chemistry, 2007, 31, 2029.                                                                                                                                                                                          | 2.8  | 53        |
| 27 | Tribenzyltin(IV)chloride Thiosemicarbazones: Novel Single Source Precursors for Growth of SnS Thin<br>Films. Chemical Vapor Deposition, 2008, 14, 292-295.                                                                                                                   | 1.3  | 52        |
| 28 | Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s). Journal of Materials Chemistry, 2011, 21, 18768.                                                                                                                   | 6.7  | 50        |
| 29 | Deposition of MSe (M = Cd, Zn) Filmsby LP-MOCVD from Novel Single-Source Precursors<br>M[(SePPh2)2N]2. Chemical Vapor Deposition, 2002, 8, 187-189.                                                                                                                          | 1.3  | 46        |
| 30 | Aerosol-assisted chemical vapour deposition of indium telluride thin films from<br>{In(μ-Te)[N(iPr2PTe)2]}3. Journal of Materials Chemistry, 2006, 16, 4542-4547.                                                                                                            | 6.7  | 46        |
| 31 | Phosphine stabilized copper(i) complexes of dithiocarbamates and xanthates and their decomposition pathways. New Journal of Chemistry, 2011, 35, 2773.                                                                                                                       | 2.8  | 44        |
| 32 | Syntheses, X-ray structures and AACVD studies of group 11 ditelluroimidodiphosphinate complexes.<br>Dalton Transactions, 2007, , 1528.                                                                                                                                       | 3.3  | 43        |
| 33 | The deposition of thin films of CuME2 by CVD techniques (M = In, Ga and E = S, Se). Journal of Materials Chemistry, 2003, 13, 1942.                                                                                                                                          | 6.7  | 42        |
| 34 | Facile and reproducible syntheses of bis(dialkylselenophosphenyl)-selenides and -diselenides: X-ray<br>structures of (iPr2PSe)2Se, (iPr2PSe)2Se2 and (Ph2PSe)2Se. Chemical Communications, 2006, , 2179.                                                                     | 4.1  | 41        |
| 35 | Low temperature CVD growth of PbS films on plastic substrates. Chemical Communications, 2011, 47, 1991.                                                                                                                                                                      | 4.1  | 41        |
| 36 | Single-source precursors to ternary silver indium sulfide materials. Chemical Communications, 2001, , 2304-2305.                                                                                                                                                             | 4.1  | 40        |

MOHAMMAD AFZAAL

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Understanding the Decomposition Pathways of Mixed Sulfur/Selenium Lead Phosphinato Complexes<br>Explaining the Formation of Lead Selenide. Journal of Physical Chemistry C, 2011, 115, 16904-16909.                                           | 3.1  | 37        |
| 38 | Passivation of lanthanide surface sites in sub-10Ânm NaYF4:Eu3+ nanocrystals. Journal of Nanoparticle<br>Research, 2012, 14, 1228.                                                                                                            | 1.9  | 37        |
| 39 | Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall<br>β-NaYF4 nanocrystals. Journal of Materials Chemistry, 2012, 22, 5356.                                                                   | 6.7  | 37        |
| 40 | Studies of Molybdenum Disulfide Nanostructures Prepared by AACVD Using Single-Source Precursors.<br>Chemical Vapor Deposition, 2006, 12, 597-599.                                                                                             | 1.3  | 35        |
| 41 | Silica coated PbS nanowires. Journal of Materials Chemistry, 2006, 16, 1113.                                                                                                                                                                  | 6.7  | 34        |
| 42 | Deposition of copper selenide thin films and nanoparticles. Journal of Crystal Growth, 2006, 297, 61-65.                                                                                                                                      | 1.5  | 34        |
| 43 | Morphological Evolution of PbSe Crystals via the CVD Route. Chemistry of Materials, 2010, 22, 4619-4624.                                                                                                                                      | 6.7  | 34        |
| 44 | Single-Source Routes to Cobalt Sulfide and Manganese Sulfide Thin Films. Chemical Vapor Deposition, 2005, 11, 91-94.                                                                                                                          | 1.3  | 33        |
| 45 | Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals.<br>Chemistry of Materials, 2015, 27, 3797-3800.                                                                                              | 6.7  | 29        |
| 46 | Metal-organic chemical vapor deposition of indium selenide films using a single-source precursor.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 391-394.                                  | 3.5  | 28        |
| 47 | Nickel(ii) complexes of heterodichalcogenido and monochalcogenido imidodiphosphinate ligands:<br>AACVD synthesis of nickel ditelluride. Dalton Transactions, 2008, , 7004.                                                                    | 3.3  | 27        |
| 48 | Towards quantitatively reproducible substrates for SERS. Analyst, The, 2008, 133, 1449.                                                                                                                                                       | 3.5  | 27        |
| 49 | The poly(ethylene glycol) assisted preparation of NH4TiOF3 mesocrystals and their topotactic conversion to TiO2. Journal of Materials Chemistry, 2012, 22, 25123.                                                                             | 6.7  | 25        |
| 50 | Metal-organic chemical vapor deposition of β-In2S3 thin films using a single-source approach. Journal of Materials Science: Materials in Electronics, 2003, 14, 555-557.                                                                      | 2.2  | 23        |
| 51 | Cadmium Sulfide and Cadmium Phosphide Thin Films from a Single Cadmium Compound. Inorganic<br>Chemistry, 2011, 50, 2052-2054.                                                                                                                 | 4.0  | 22        |
| 52 | Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from<br>dichalcogenoimidodiphosphinato complexes: deposition, spectroscopic and computational studies.<br>Dalton Transactions, 2010, 39, 6080. | 3.3  | 21        |
| 53 | Continuous Flow Supercritical Chemical Fluid Deposition of Optoelectronic Quality CdS. Advanced Materials, 2009, 21, 4115-4119.                                                                                                               | 21.0 | 20        |
| 54 | Nanoparticles and Thin Films of Silver from Complexes of Derivatives of<br>N-(Diisopropylthiophosphoryl)thioureas. Chemistry of Materials, 2009, 21, 4233-4240.                                                                               | 6.7  | 19        |

MOHAMMAD AFZAAL

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Progression towards high efficiency perovskite solar cells via optimisation of the front electrode and blocking layer. Journal of Materials Chemistry C, 2016, 4, 11269-11277.                                 | 5.5  | 17        |
| 56 | Surface-related properties of perovskite CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> thin films by aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry C, 2017, 5, 8366-8370.     | 5.5  | 16        |
| 57 | Tantalum(v) diethylamide, [Ta(NEt2)5]: a potentially important and crystalline precursor for the CVD of oxides containing tantalum. Journal of Materials Chemistry, 2006, 16, 2226.                            | 6.7  | 15        |
| 58 | Optimised atmospheric pressure CVD of monoclinic VO2 thin films with picosecond phase transition.<br>Surface and Coatings Technology, 2016, 287, 160-165.                                                      | 4.8  | 15        |
| 59 | Growth patterns and properties of aerosol-assisted chemical vapor deposition of CH3NH3PbI3 films in a single step. Surface and Coatings Technology, 2017, 321, 336-340.                                        | 4.8  | 15        |
| 60 | Single molecular precursor for synthesis of GaAs nanoparticles. Materials Science and Technology,<br>2004, 20, 959-963.                                                                                        | 1.6  | 13        |
| 61 | Epitaxial CdTe Rods on Au/Si Islands from a Molecular Compound. Journal of the American Chemical<br>Society, 2010, 132, 5964-5965.                                                                             | 13.7 | 13        |
| 62 | Mixed ligand chelates of copper(II) with substituted diamines. Polyhedron, 2005, 24, 1101-1107.                                                                                                                | 2.2  | 12        |
| 63 | Thiol-containing microspheres as polymeric ligands for the immobilisation of quantum dots. Journal of Materials Chemistry, 2009, 19, 215-221.                                                                  | 6.7  | 12        |
| 64 | 1 cm2 CH3NH3PbI3 mesoporous solar cells with 17.8% steady-state efficiency by tailoring front FTO electrodes. Journal of Materials Chemistry C, 2017, 5, 4946-4950.                                            | 5.5  | 12        |
| 65 | Synthesis of novel mixed indium(III) chalcogenolato complexes: Potential precursors for indium chalcogenides. Polyhedron, 2006, 25, 864-868.                                                                   | 2.2  | 11        |
| 66 | Investigation of New 2,5â€Dimethylpyrrolyl Titanium Alkylamide and Alkoxide Complexes as Precursors<br>for the Liquid Injection MOCVD of TiO <sub>2</sub> . Chemical Vapor Deposition, 2010, 16, 93-99.        | 1.3  | 11        |
| 67 | Improved FTO/NiOx Interfaces for Inverted Planar Triple-Cation Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1302-1308.                                                                      | 2.5  | 10        |
| 68 | Conducting ZnO thin films with an unusual morphology: Large flat microcrystals with (0001) facets perpendicular to the plane by chemical bath deposition. Materials Chemistry and Physics, 2011, 127, 174-178. | 4.0  | 9         |
| 69 | Aerosol-assisted CVD of cadmium diselenoimidodiphosphinate and formation of a new iPr2N2P3+ ion supported by combined DFT and mass spectrometric studies. Dalton Transactions, 2016, 45, 18603-18609.          | 3.3  | 9         |
| 70 | Transparent Conductive Oxide Films for High-Performance Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 518-524.                                                                           | 2.5  | 9         |
| 71 | Crystal phase transition in LixNa1â^'xGdF4solid solution nanocrystals – tuning of optical properties.<br>Journal of Materials Chemistry C, 2014, 2, 9911-9917.                                                 | 5.5  | 8         |
| 72 | Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure<br>Chemical Vapour Deposition. Coatings, 2016, 6, 43.                                                             | 2.6  | 7         |

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The deposition of cadmium selenide and cadmium phosphide thin films from cadmium<br>thioselenoimidodiphosphinate by AACVD and the formation of an aromatic species. Dalton<br>Transactions, 2019, 48, 1436-1442.                                                                                | 3.3 | 7         |
| 74 | Enhancement of the Photovoltaic Performance of Dye-Sensitized Solar Cells by Cosensitizing TiO2<br>Photoanode With Uncapped PbS Nanocrystals and Ruthenizer. IEEE Journal of Photovoltaics, 2018, 8,<br>512-516.                                                                                | 2.5 | 5         |
| 75 | Optically tuned and large-grained bromine doped CH3NH3PbI3 perovskite thin films via aerosol-assisted chemical vapour deposition. Materials Chemistry and Physics, 2019, 223, 157-163.                                                                                                          | 4.0 | 5         |
| 76 | <i>catena</i> -Poly[diethyl(2-hydroxyethyl)ammonium<br>[[tetra-μ-acetato-l² <sup>8</sup> <i>O</i> : <i>O</i> ?dicuprate(II)( <i>Cu</i> — <i>Cu</i> ]-μ-acetato-l² <su<br>dichloromethane solvate]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65,<br/>m163-m164.</su<br> | 0,2 | <ţ>O:‹i>  |
| 77 | New Approach Towards The Deposition of I-III-VI Thin Films. Materials Research Society Symposia<br>Proceedings, 2001, 692, 1.                                                                                                                                                                   | 0.1 | 4         |
| 78 | Probing the growth mechanism of self-catalytic lead selenide wires. Journal of Materials Chemistry, 2012, 22, 12731.                                                                                                                                                                            | 6.7 | 3         |
| 79 | Phenyl substituted ditelluro-imidodiphosphinate complexes of iron, nickel, palladium and platinum, and their pyrolysis studies generating metal tellurides. Polyhedron, 2019, 160, 157-162.                                                                                                     | 2.2 | 3         |
| 80 | Metal-Organic Chemical Vapour Deposition of II-VI Semiconductor Thin Films Using Single-Source<br>Approach. Materials Research Society Symposia Proceedings, 2002, 730, 1.                                                                                                                      | 0.1 | 1         |
| 81 | N-alkyldithiocarbamato complexes [Cd(S2CNHR)2] (R = C2H5, C4H9, C6H13, C12H25); Synthesis,<br>Characterisation and Deposition of II/VI Nanoparticles Materials Research Society Symposia<br>Proceedings, 2005, 879, 1.                                                                          | 0.1 | 1         |
| 82 | Precursor Chemistry – Main Group Metal Chalcogenides. , 2013, , 1001-1020.                                                                                                                                                                                                                      |     | 1         |
| 83 | Synthesis and structural characterisation of a new tantalum hydroxylamide dimer. Inorganic<br>Chemistry Communication, 2014, 44, 180-182.                                                                                                                                                       | 3.9 | 1         |
| 84 | Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD. Applied Physics A: Materials Science and Processing, 2020, 126, 1.                                                                                                                   | 2.3 | 1         |
| 85 | Deposition of II/VI thin films from Novel Single-Source Precursors. Materials Research Society<br>Symposia Proceedings, 2002, 744, 1.                                                                                                                                                           | 0.1 | 0         |
| 86 | Single-Source Approach for The Growth of I-III-VI Thin Films. Materials Research Society Symposia<br>Proceedings, 2002, 730, 1.                                                                                                                                                                 | 0.1 | 0         |
| 87 | A Novel Method for Synthesizing EuS Nanocrystals from a Single-Source Precursor under White LED<br>Irradiation ChemInform, 2005, 36, no.                                                                                                                                                        | 0.0 | 0         |
| 88 | Single-Source Routes to Cobalt Sulfide and Manganese Sulfide Thin Films ChemInform, 2005, 36, no.                                                                                                                                                                                               | 0.0 | 0         |
| 89 | Deposition of TiO2 Films by Liquid Injection ALD using New Titanium 2,5-dimethylpyrrolyl Complexes.<br>ECS Transactions, 2009, 25, 813-819.                                                                                                                                                     | 0.5 | 0         |
|    |                                                                                                                                                                                                                                                                                                 |     |           |

90 Paramagnetic Crystalline Cobalt Selenide Materials via a Molecular Approach. , 2019, , .

0

| #  | Article                                                                                                                               | IF | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91 | Comparing Lead Iodide and Lead Acetate Based Perovskite Absorber Layers by Aerosol-Assisted Chemical<br>Vapor Deposition. , 2020, , . |    | 0         |