
Vassilis Pachnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2266868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature, 1994, 367, 380-383.	27.8	1,516
2	GDNF signalling through the Ret receptor tyrosine kinase. Nature, 1996, 381, 789-793.	27.8	805
3	Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996, 381, 785-789.	27.8	785
4	Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nature Reviews Neuroscience, 2007, 8, 466-479.	10.2	479
5	Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex. Journal of Neuroscience, 2007, 27, 10935-10946.	3.6	356
6	<i>Lhx6</i> Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes. Journal of Neuroscience, 2007, 27, 3078-3089.	3.6	348
7	Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513, 551-554.	27.8	347
8	Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. Journal of Clinical Investigation, 2011, 121, 3412-3424.	8.2	321
9	Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria. Neuron, 2015, 85, 289-295.	8.1	271
10	Enteric Nervous System Progenitors Are Coordinately Controlled by the G Protein-Coupled Receptor EDNRB and the Receptor Tyrosine Kinase RET. Neuron, 2003, 40, 905-916.	8.1	237
11	The enteric nervous system. Developmental Biology, 2012, 366, 64-73.	2.0	229
12	Neuronal programming by microbiota regulates intestinal physiology. Nature, 2020, 578, 284-289.	27.8	198
13	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	8.1	194
14	Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development (Cambridge), 2003, 130, 6387-6400.	2.5	193
15	Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia, 2015, 63, 229-241.	4.9	193
16	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	12.6	181
17	The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology, 2016, 151, 836-844.	1.3	178
18	Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science, 2017, 356, 722-726.	12.6	130

VASSILIS PACHNIS

#	Article	IF	CITATIONS
19	Functional Loss of Semaphorin 3C and/or Semaphorin 3D and Their Epistatic Interaction with Ret Are Critical to Hirschsprung Disease Liability. American Journal of Human Genetics, 2015, 96, 581-596.	6.2	118
20	Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6919-6924.	7.1	116
21	White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Developmental Biology, 2016, 417, 229-251.	2.0	112
22	Development of the intrinsic and extrinsic innervation of the gut. Developmental Biology, 2016, 417, 158-167.	2.0	107
23	Neuroimmune regulation during intestinal development and homeostasis. Nature Immunology, 2017, 18, 116-122.	14.5	102
24	Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex. Cell Reports, 2018, 22, 1710-1721.	6.4	85
25	Regulation of intestinal immunity and tissue repair by enteric glia. Nature, 2021, 599, 125-130.	27.8	80
26	Enteric nervous system development: Recent progress and future challenges. Autonomic Neuroscience: Basic and Clinical, 2009, 151, 61-69.	2.8	77
27	Prospective Identification and Isolation of Enteric Nervous System Progenitors Using Sox2. Stem Cells, 2011, 29, 128-140.	3.2	77
28	Transcription and Signaling Regulators in Developing Neuronal Subtypes of Mouse and Human Enteric Nervous System. Gastroenterology, 2018, 154, 624-636.	1.3	76
29	Planar cell polarity genes control the connectivity of enteric neurons. Journal of Clinical Investigation, 2013, 123, 1763-1772.	8.2	75
30	The zebrafish homologue of the ret receptor and its pattern of expression during embryogenesis. Oncogene, 1997, 14, 879-889.	5.9	69
31	The LIM Homeodomain Protein Lhx6 Regulates Maturation of Interneurons and Network Excitability in the Mammalian Cortex. Cerebral Cortex, 2013, 23, 1811-1823.	2.9	54
32	Targeted Disruption of the Murine Galanin Gene a. Annals of the New York Academy of Sciences, 1998, 863, 22-47.	3.8	47
33	Geminin Regulates Cortical Progenitor Proliferation and Differentiation. Stem Cells, 2011, 29, 1269-1282.	3.2	43
34	Structurally defined signaling in neuroâ€glia units in the enteric nervous system. Glia, 2019, 67, 1167-1178.	4.9	43
35	A Novel Zebrafish ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genetics, 2016, 12, e1006439.	3.5	40
36	Enteric glia as a source of neural progenitors in adult zebrafish. ELife, 2020, 9, .	6.0	39

3

VASSILIS PACHNIS

#	Article	IF	CITATIONS
37	Rac-GTPases Regulate Microtubule Stability and Axon Growth of Cortical GABAergic Interneurons. Cerebral Cortex, 2015, 25, 2370-2382.	2.9	37
38	Homeodomain proteins Mox1 and Mox2 associate with Pax1 and Pax3 transcription factors. FEBS Letters, 2001, 499, 274-278.	2.8	36
39	Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. Journal of Neuroscience, 2016, 36, 4339-4350.	3.6	35
40	Differential Geminin Requirement for Proliferation of Thymocytes and Mature T Cells. Journal of Immunology, 2010, 184, 2432-2441.	0.8	30
41	The role of enteric glia in intestinal immunity. Current Opinion in Immunology, 2022, 77, 102183.	5.5	20
42	Flanking regulatory sequences of the locus encoding the murine GDNF receptor,c-ret, directs lac Z (?-galactosidase) expression in developing somatosensory system. Developmental Dynamics, 2001, 222, 389-402.	1.8	14
43	Homeostatic Regulation of Interneuron Apoptosis During Cortical Development. Journal of Experimental Neuroscience, 2018, 12, 117906951878427.	2.3	9
44	Enteric Nervous System: lessons from neurogenesis for reverse engineering and disease modelling and treatment. Current Opinion in Pharmacology, 2020, 50, 100-106.	3.5	9
45	Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biology, 2016, 14, 94.	3.8	8
46	Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Developmental Biology, 2016, 409, 392-405.	2.0	8
47	Multiple Roles of Ret Signalling During Enteric Neurogenesis. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	6
48	Molecular profiling of enteric nervous system cell lineages. Nature Protocols, 2022, 17, 1789-1817.	12.0	6
49	Linking neurons to immunity: Lessons fromHydra. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19624-19626.	7.1	3
50	Enteric glia bring fresh WNT to the intestinal stem cell niche. Cell Stem Cell, 2022, 29, 3-4.	11.1	2