
Neha Mulchandani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2266682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of chain microstructure on the thermal, mechanical and crystallization behaviors of poly(ε-caprolactone-co-lactide) copolymers: Processable biomaterials with tunable properties. Materials Today Communications, 2022, 33, 104040.	1.9	2
2	Toughened PLA- <i>b</i> -PCL- <i>b</i> -PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polymer Chemistry, 2021, 12, 3806-3824.	3.9	22
3	Curcumin loaded iron functionalized biopolymeric nanofibre reinforced edible nanocoatings for improved shelf life of cut pineapples. Food Packaging and Shelf Life, 2021, 28, 100658.	7.5	13
4	Valorization of a CO ₂ â€Derived Lactone by Acyclic Diene Metathesis Polymerization. ChemistrySelect, 2021, 6, 13947-13954.	1.5	2
5	Synthesis Strategies for Biomedical Grade Polymers. Materials Horizons, 2020, , 1-20.	0.6	3
6	Polymers from Carbon Dioxide—A Route Towards a Sustainable Future. Materials Horizons, 2020, , 35-49.	0.6	5
7	Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene) Tj ETQq1 1 C Biological Macromolecules, 2019, 141, 831-842.).784314 r 7.5	gBT /Overloc 17
8	Resorbable polymers in bone repair and regeneration. , 2019, , 87-125.		9
9	Effect of Block Length and Stereocomplexation on the Thermally Processable Poly(Îμ-caprolactone) and Poly(Lactic acid) Block Copolymers for Biomedical Applications. ACS Applied Polymer Materials, 2019, 1, 3354-3365.	4.4	17
10	Polylactic Acid-Based Hydrogels and Its Renewable Characters: Tissue Engineering Applications. Polymers and Polymeric Composites, 2019, , 1537-1559.	0.6	1
11	Functionalized chitosan mediated stereocomplexation of poly(lactic acid): Influence on crystallization, oxygen permeability, wettability and biocompatibility behavior. Polymer, 2018, 142, 196-208.	3.8	23
12	Silk nanoâ \in discs: A natural material for cancer therapy. Biopolymers, 2018, 109, e23231.	2.4	24
13	Polylactic Acid Based Hydrogels and Its Renewable Characters: Tissue Engineering Applications. Polymers and Polymeric Composites, 2018, , 1-24.	0.6	1
14	Multifunctional Nanohydroxyapatite-Promoted Toughened High-Molecular-Weight Stereocomplex Poly(lactic acid)-Based Bionanocomposite for Both 3D-Printed Orthopedic Implants and High-Temperature Engineering Applications. ACS Omega, 2017, 2, 4039-4052.	3.5	54