Xiaolei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2266576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of cutting parameters and tool geometry on cutting forces and tool wear in milling high-density fiberboard with ceramic cutting tools. International Journal of Advanced Manufacturing Technology, 2017, 91, 4033-4041.	3.0	32
2	The cutting performance of Al ₂ O ₃ and Si ₃ N ₄ ceramic cutting tools in the milling plywood. Advances in Applied Ceramics, 2018, 117, 16-22.	1.1	23
3	Effect of rake angle on cutting performance during machining of stone-plastic composite material with polycrystalline diamond cutters. Journal of Mechanical Science and Technology, 2019, 33, 351-356.	1.5	22
4	High-quality and high-efficiency machining of stone-plastic composite with diamond helical cutters. Journal of Manufacturing Processes, 2020, 58, 914-922.	5.9	20
5	Machinability of wood fiber/polyethylene composite during orthogonal cutting. Wood Science and Technology, 2021, 55, 521-534.	3.2	17
6	Assessment of Cutting Forces and Temperature in Tapered Milling of Stone–Plastic Composite Using Response Surface Methodology. Jom, 2020, 72, 3917-3925.	1.9	16
7	Machinability of Different Wood-Plastic Composites during Peripheral Milling. Materials, 2022, 15, 1303.	2.9	16
8	Assessment of Surface Roughness in Milling of Beech Using a Response Surface Methodology and an Adaptive Network-Based Fuzzy Inference System. Machines, 2022, 10, 567.	2.2	16
9	Tool Wear and Machined Surface Roughness during Wood Flour/Polyethylene Composite Peripheral Up-milling using Cemented Tungsten Carbide Tools. BioResources, 2014, 9, .	1.0	14
10	Cutting Forces and Chip Morphology during Wood Plastic Composites Orthogonal Cutting. BioResources, 2014, 9, .	1.0	13
11	Energy Efficiency Optimization for Machining of Wood Plastic Composite. Machines, 2022, 10, 104.	2.2	13
12	Morphology, mechanism and kerf variation during CO2 laser cutting pine wood. Journal of Manufacturing Processes, 2021, 68, 13-22.	5.9	10
13	Milling performance of stoneâ€plastic composite with diamond cutters. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 1307-1318.	0.9	10
14	Effect of Cutting Speed on Machinability of Stone–Plastic Composite Material. Science of Advanced Materials, 2019, 11, 884-892.	0.7	9
15	Investigation on Milling Quality of Stone–Plastic Composite Using Response Surface Methodology. Jom, 0, , 1.	1.9	9
16	Cutting Force and Cutting Quality during Tapered Milling of Glass Magnesium Board. Applied Sciences (Switzerland), 2019, 9, 2533.	2.5	8
17	Machinability of Stone—Plastic Materials During Diamond Planing. Applied Sciences (Switzerland), 2019, 9, 1373.	2.5	8
18	Machinability of Luxury Vinyl Tiles during Plain Milling Using a Helical Cutter. Materials, 2019, 12, 2174.	2.9	7

XIAOLEI GUO

#	Article	IF	CITATIONS
19	Cutting forces and cutting quality in the up-milling of solid wood using ceramic cutting tools. International Journal of Advanced Manufacturing Technology, 2021, 114, 1575-1584.	3.0	7
20	Cutting forces and chip formation revisited based on orthogonal cutting of Scots pine. Holzforschung, 2019, 73, 131-138.	1.9	6
21	Evaluation of Physical and Mechanical Properties of Fiber-Reinforced Poplar Scrimber. BioResources, 2016, 12, .	1.0	5
22	Built-up edge formation mechanisms in orthogonal cutting of wood-plastic composite. Wood Material Science and Engineering, 2022, 17, 388-396.	2.3	4
23	Discrete wavelet transformation and genetic algorithm – back propagation neural network applied in monitoring woodworking tool wear conditions in the milling operation spindle power signals. BioResources, 2021, 16, 2369-2384.	1.0	3
24	Investigation of Shear Strength of Engineered Wood Flooring Bonded with PUR by Response Surface Methodology. BioResources, 2017, 12, .	1.0	3
25	Architectural (decorative) natural fiber composites for construction. , 2017, , 425-445.		2
26	Cutting performance of cemented carbide cutting tool in turning highâ€density fiberboard. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 1476-1484.	0.9	2
27	Machinability investigation in turning of high density fiberboard. PLoS ONE, 2018, 13, e0203838.	2.5	2
28	Prediction of cutting temperature in the milling of wood-plastic composite using artificial neural network. BioResources, 2021, 16, 6993-7005.	1.0	2
29	Forces and Heat Variation Laws of Pine Materials Processing and Microcosmic Characteristics of Surface Damage. BioResources, 2018, 13, .	1.0	1
30	Dimensional stability of glass fiber reinforced poplar scrimber. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1364-1371.	0.9	1
31	Curve sawing effects on board dimensions when rip-sawing with a circular saw blade. Wood Material Science and Engineering, 2016, 11, 135-141.	2.3	0
32	RESEARCH ON CUTTING FORCES AND CUTTING TEMPERATURE IN ORTHOGONAL CUTTING SOFTWOOD AND HARDWOOD PARALLEL TO GRAIN. Wood and Fiber Science, 2018, 50, 458-464.	0.6	0