Chandan Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2266234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement in Anti-Corrosive Behavior of Ni-P Coatings by Incorporation of Carbon Nanotubes. Journal of Materials Engineering and Performance, 2022, 31, 1573-1584.	2.5	4
2	Evolution of Texture, Strain, and Grain Boundary Constitution in Copper–Chromium Coatings and its Effect on Coating Corrosion Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 679-688.	2.2	7
3	Correlation Between Texture, Grain Boundary Constitution, and Corrosion Behavior of Ni-Cu Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1440-1449.	2.2	6
4	Evolution of Texture, Grain Boundary Constitution, Strain, and Corrosion Behavior of Electrodeposited Ni–P Coatings as a Function of Deposition Current Density. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1430-1439.	2.2	4
5	Bioactive surface modifications through thermally sprayed hydroxyapatite composite coatings: a review of selective reinforcements. Biomaterials Science, 2022, 10, 2484-2523.	5.4	22
6	Texture evolution and corrosion behaviour of Sn–1.5 wt% Cr coatings containing Graphene oxide. Philosophical Magazine, 2022, 102, 522-541.	1.6	5
7	Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. Journal of Materials Science, 2022, 57, 8041-8063.	3.7	15
8	Effect of Zn Incorporation on the Evolution of Texture, Strain, Grain Boundary Constitution, and Corrosion Behavior of Electrodeposited SnZn Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2743-2753.	2.2	6
9	A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. Journal of Materials Chemistry B, 2021, 9, 228-249.	5.8	91
10	Correlating the Five-Parameter Grain Boundary Character Distribution and Corrosion Behavior of Zinc-Carbon Nanotube Composite Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 364-377.	2.2	17
11	Kinetics and Thermodynamics of Metal Cluster Nucleation Over Graphene Oxide. Minerals, Metals and Materials Series, 2021, , 229-241.	0.4	0
12	Electrogalvanization using Zn-graphene oxide composite coatings with enhanced corrosion resistance performance. Journal of Coatings Technology Research, 2021, 18, 753-760.	2.5	3
13	Synthesis and Mechanism of Formation of Non-equilibrium Ag–Ni Nanotubes. Metallography, Microstructure, and Analysis, 2021, 10, 86-95.	1.0	0
14	Assessment of the Nucleation and Growth Mechanism of Copper Electrodeposition Over Graphene Oxide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2522-2533.	2.2	3
15	High-Strength, Strongly Bonded Nanocomposite Hydrogels for Cartilage Repair. ACS Applied Materials & Interfaces, 2021, 13, 24505-24523.	8.0	50
16	Texture and grain boundary engineering in electrodeposited SnCu coatings and its effect on coating corrosion behaviour. Philosophical Magazine, 2021, 101, 2036-2053.	1.6	4
17	Evolution of texture and phase constitution in Ni-P coatings with phosphorous addition and its effect on the coating corrosion behaviour. Philosophical Magazine, 2021, 101, 2541-2559.	1.6	1
18	Corrosion behavior and protective film constitution of AlNiCoFeCu and AlCrNiCoFeCu high entropy alloy coatings. Surfaces and Interfaces, 2021, 27, 101481.	3.0	12

CHANDAN SRIVASTAVA

#	Article	IF	CITATIONS
19	Enhanced heterogeneous electron transfer kinetics in Graphene Oxide produced from mechanically milled Graphite. Carbon Trends, 2021, 5, 100095.	3.0	8
20	Electrogalvanization using new generation coatings with carbonaceous additives: progress and challenges. Corrosion Reviews, 2021, 39, 15-26.	2.0	9
21	High corrosion resistance of metal-graphene oxide-metal multilayer coatings. Philosophical Magazine, 2020, 100, 18-31.	1.6	7
22	Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N <i>_x</i> Centers for Energy-Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 36026-36039.	8.0	39
23	Microstructural, Morphological and Electrochemical Effects of Graphene Oxide Incorporation in Tin-Cobalt Composite Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4257-4273.	2.2	3
24	Graphene–ZnO nanocomposite sensor for lead-ion detection. Philosophical Magazine Letters, 2020, 100, 533-541.	1.2	5
25	Influence of Oxidation Degree of Graphene Oxide on Its Nuclear Relaxivity and Contrast in MRI. ACS Omega, 2020, 5, 22131-22139.	3.5	8
26	Evolution of Phase Constitution, Morphology and Corrosion Behavior of ZnCo Coating Containing Graphene Oxide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4274-4287.	2.2	4
27	Single Atom Nucleation of Cobalt over Graphene Oxide: Theory and Experimental Study. Langmuir, 2020, 36, 7824-7834.	3.5	2
28	Modulation of protein–graphene oxide interactions with varying degrees of oxidation. Nanoscale Advances, 2020, 2, 1904-1912.	4.6	24
29	Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings. Thin Solid Films, 2019, 686, 137434.	1.8	46
30	Correlation between microstructure and corrosion behaviour of SnBi-graphene oxide composite coatings. Surface and Coatings Technology, 2019, 375, 573-588.	4.8	28
31	Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5896-5913.	2.2	24
32	Microstructure Evolution and Corrosion Properties of Electrodeposited SnZn Coatings containing Graphene-Oxide. Microscopy and Microanalysis, 2019, 25, 746-747.	0.4	0
33	High Corrosion Resistance Offered by Carbon Nanotubes Directly Grown over Mild Steel Substrate. Microscopy and Microanalysis, 2019, 25, 750-751.	0.4	2
34	Electrochemical sensor study of TiO2 nanoparticle–graphene composite produced by mechanical milling and sonication-assisted exfoliation. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	3
35	Microstructure and corrosion behaviour of NiCo-Carbon nanotube composite coatings. Journal of Alloys and Compounds, 2019, 801, 449-459.	5.5	45
36	Microstructure and corrosion properties of zinc-graphene oxide composite coatings. Corrosion Science, 2019, 152, 234-248.	6.6	80

#	Article	IF	CITATIONS
37	Microstructure, morphology and electrochemical properties of ZnFe-Graphene composite coatings. Journal of Alloys and Compounds, 2019, 783, 820-827.	5.5	28
38	Microstructure-electrochemical property correlation in electrodeposited CuFeNiCoCr high-entropy alloy-graphene oxide composite coatings. Philosophical Magazine, 2019, 99, 718-735.	1.6	40
39	High Corrosion Resistance Offered by Multi-Walled Carbon Nanotubes Directly Grown Over Mild Steel Substrate. Jom, 2018, 70, 2590-2595.	1.9	17
40	Correlation between defect density in mechanically milled graphite and total oxygen content of graphene oxide produced from oxidizing the milled graphite. Scientific Reports, 2018, 8, 15773.	3.3	13
41	Effect of Solvent on Average Size and Size Distribution of Platinum Nanoparticles. The National Academy of Sciences, India, 2018, 41, 169-172.	1.3	Ο
42	First Report on High Entropy Alloy Nanoparticle Decorated Graphene. Scientific Reports, 2018, 8, 8737.	3.3	49
43	Synthesis of ZnO Nanocrystal–Graphene Composite by Mechanical Milling and Sonication-Assisted Exfoliation. Jom, 2017, 69, 1021-1026.	1.9	3
44	High-temperature transformation pathways for metastable ferromagnetic binary Heusler (Al–55Aat.%Mn) alloy. Journal of Materials Science, 2017, 52, 4109-4119.	3.7	12
45	Synthesis of Graphene–Magnetite Nanoparticle Composite Using Mechanical Milling and Electrochemical Exfoliation. Jom, 2017, 69, 1143-1148.	1.9	6
46	Effect of core–shell nanoparticle geometry on the enhancement of the proton relaxivity value in a nuclear magnetic resonance experiment. RSC Advances, 2016, 6, 64605-64610.	3.6	4
47	Predicting Pathways for Synthesis of Ferromagnetic Ï,, Phase in Binary Heusler Alloy Al-55 pct Mn Through Understanding of the Kinetics of εâ€ʿĨ,, Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6555-6568.	2.2	8
48	Synthesis of Multimetal–Graphene Composite by Mechanical Milling. Jom, 2016, 68, 2574-2578.	1.9	3
49	Electrochemical behaviour of chromium–graphene composite coating. RSC Advances, 2016, 6, 62083-62090.	3.6	35
50	ZnO coated CoFe ₂ O ₄ nanoparticles for multimodal bio-imaging. RSC Advances, 2016, 6, 18843-18851.	3.6	24
51	Ultrafine graphene oxide–CoFe ₂ O ₄ nanoparticle composite as T ₁ and T ₂ contrast agent for magnetic resonance imaging. RSC Advances, 2016, 6, 17423-17429.	3.6	14
52	Nonequilibrium Microstructures for Ag–Ni Nanowires. Microscopy and Microanalysis, 2015, 21, 491-497.	0.4	3
53	Synthesis, electron microscopy and anti-microbial properties of Fe ₃ O ₄ –Ag nanotubes. RSC Advances, 2015, 5, 38164-38169.	3.6	3
54	MnFe ₂ O ₄ –Fe ₃ O ₄ core–shell nanoparticles as a potential contrast agent for magnetic resonance imaging. RSC Advances, 2015, 5, 97807-97815.	3.6	30

CHANDAN SRIVASTAVA

#	Article	IF	CITATIONS
55	Synthesis and electrochemical behaviour of NiFeCr nanoparticle coatings. RSC Advances, 2015, 5, 30877-30881.	3.6	3
56	Phase formation and stability of alloy phases in free nanoparticles: some insights. RSC Advances, 2015, 5, 35541-35550.	3.6	15
57	Synergetic effect of size and morphology of cobalt ferrite nanoparticles on proton relaxivity. IET Nanobiotechnology, 2014, 8, 184-189.	3.8	5
58	Effect of Reflux Time on Nanoparticle Shape. Microscopy and Microanalysis, 2014, 20, 847-851.	0.4	1
59	Ag-Ni Nanoparticles: Synthesis and Phase Stability. Electrochemical and Solid-State Letters, 2012, 15, K41.	2.2	11
60	Compositionally Graded Microstructure for Ag-Fe Nanoparticles. Nano-Micro Letters, 2012, 4, 172-175.	27.0	3
61	Onset of sphalerite to wurtzite transformation in ZnS nanoparticles. Journal of Applied Physics, 2011, 110, .	2.5	12
62	Solving the corrosion behaviour and cobalt content correlation anomaly in electrodeposited Ni–Co coatings by analysis of coating micro-texture, strain and grain boundary constitution. Philosophical	1.6	2

62 coatings by analysis of coating micro-texture, strain and grain boundary constitution. Philosophical Magazine, 0, , 1-13.