
Bauke W Dijkstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265846/publications.pdf Version: 2024-02-01

RALIKE W/ DIRSTRA

#	Article	IF	CITATIONS
1	The <i>α</i> / <i>β</i> hydrolase fold. Protein Engineering, Design and Selection, 1992, 5, 197-211.	2.1	1,887
2	Bacterial Biocatalysts: Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases. Annual Review of Microbiology, 1999, 53, 315-351.	7.3	927
3	Bacterial lipases. FEMS Microbiology Reviews, 1994, 15, 29-63.	8.6	867
4	αĴ² Hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology, 1999, 9, 732-737.	5.7	752
5	Crystal Structure of <i>Agaricus bisporus</i> Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone. Biochemistry, 2011, 50, 5477-5486.	2.5	648
6	Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature, 1993, 363, 693-698.	27.8	496
7	Structure of bovine pancreatic phospholipase A2 at 1.7 Ã resolution. Journal of Molecular Biology, 1981, 147, 97-123.	4.2	466
8	Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and x-ray structure of a complex with allosamidin evidence for substrate assisted catalysis. Biochemistry, 1995, 34, 15619-15623.	2.5	349
9	X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nature Structural Biology, 1999, 6, 432-436.	9.7	348
10	Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Engineering, Design and Selection, 1991, 4, 719-737.	2.1	331
11	Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes. Journal of the American Chemical Society, 1997, 119, 7954-7959.	13.7	296
12	X-ray structure of phospholipase A2 complexed with a substrate-derived inhibitor. Nature, 1990, 347, 689-691.	27.8	271
13	Active site and catalytic mechanism of phospholipase A2. Nature, 1981, 289, 604-606.	27.8	265
14	Structure of porcine pancreatic phospholipase A2 at 2·6resolution and comparison with bovine phospholipase A2. Journal of Molecular Biology, 1983, 168, 163-179.	4.2	258
15	Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 2013, 163, 250-272.	3.8	250
16	Crystal Structure of Pseudomonas aeruginosa Lipase in the Open Conformation. Journal of Biological Chemistry, 2000, 275, 31219-31225.	3.4	248
17	The crystal structure of Bacillus subtili lipase: a minimal α/β hydrolase fold enzyme. Journal of Molecular Biology, 2001, 309, 215-226.	4.2	242
18	Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure, 1994, 2, 1181-1189.	3.3	234

#	Article	IF	CITATIONS
19	Directed evolution of an enantioselective lipase. Chemistry and Biology, 2000, 7, 709-718.	6.0	231
20	Nucleotide Sequence and X-ray Structure of Cyclodextrin Clycosyltransferase from Bacillus circulans Strain 251 in a Maltose-dependent Crystal Form. Journal of Molecular Biology, 1994, 236, 590-600.	4.2	228
21	Crystal Structure of the Copper-Containing Quercetin 2,3-Dioxygenase from Aspergillus japonicus. Structure, 2002, 10, 259-268.	3.3	216
22	1.68-Ã Crystal Structure of Endopolygalacturonase II fromAspergillus niger and Identification of Active Site Residues by Site-directed Mutagenesis. Journal of Biological Chemistry, 1999, 274, 30474-30480.	3.4	203
23	Structure of Human Chitotriosidase. Journal of Biological Chemistry, 2002, 277, 25537-25544.	3.4	185
24	The 1.8 Ã Resolution Structure of Hevamine, a Plant Chitinase/Lysozyme, and Analysis of the Conserved Sequence and Structure Motifs of Glycosyl Hydrolase Family 18. Journal of Molecular Biology, 1996, 262, 243-257.	4.2	183
25	Crystal Structure and Carbohydrate-binding Properties of the Human Cartilage Glycoprotein-39. Journal of Biological Chemistry, 2003, 278, 37753-37760.	3.4	183
26	Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes EMBO Journal, 1991, 10, 1297-1302.	7.8	176
27	Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. Journal of Molecular Biology, 1978, 124, 53-60.	4.2	175
28	The Raw Starch Binding Domain of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251. Journal of Biological Chemistry, 1996, 271, 32777-32784.	3.4	172
29	Three-dimensional Structure of Endo-1,4-β-xylanase I fromAspergillus niger: Molecular Basis for its Low pH Optimum. Journal of Molecular Biology, 1996, 263, 70-78.	4.2	170
30	Anaerobic enzyme*substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16625-16630.	7.1	170
31	Structure and Function of Human Tyrosinase and Tyrosinaseâ€Related Proteins. Chemistry - A European Journal, 2018, 24, 47-55.	3.3	165
32	Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature, 1994, 367, 750-753.	27.8	164
33	Extreme Stabilization of a Thermolysin-like Protease by an Engineered Disulfide Bond. Journal of Biological Chemistry, 1997, 272, 11152-11156.	3.4	164
34	Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature, 1999, 401, 717-721.	27.8	162
35	The X-ray Structure of Epoxide Hydrolase from Agrobacterium radiobacter AD1. Journal of Biological Chemistry, 1999, 274, 14579-14586.	3.4	160
36	Engineering of cyclodextrin glycosyltransferase reaction and product specificity. BBA - Proteins and Proteomics, 2000, 1543, 336-360.	2.1	159

#	Article	IF	CITATIONS
37	Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Engineering, Design and Selection, 1988, 2, 119-125.	2.1	150
38	Structure of Cyclodextrin Glycosyltransferase Complexed with a Maltononaose Inhibitor at 2.6 Ã Resolution. Implications for Product Specificityâ€,‡. Biochemistry, 1996, 35, 4241-4249.	2.5	149
39	Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO Journal, 1999, 18, 5187-5194.	7.8	148
40	The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. FEBS Journal, 2000, 267, 658-665.	0.2	148
41	Site-Directed Mutations in Tyrosine 195 of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 Affect Activity and Product Specificity. Biochemistry, 1995, 34, 3368-3376.	2.5	146
42	Crystal Structures of the ATPase Subunit of the Glucose ABC Transporter from Sulfolobus solfataricus: Nucleotide-free and Nucleotide-bound Conformations. Journal of Molecular Biology, 2003, 330, 343-358.	4.2	145
43	Refined X-ray Structures of Haloalkane Dehalogenase at pH 6·2 and pH 8·2 and Implications for the Reaction Mechanism. Journal of Molecular Biology, 1993, 232, 856-872.	4.2	143
44	X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases. Biochemistry, 1995, 34, 2234-2240.	2.5	140
45	Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21406-21411.	7.1	140
46	Structure of Human Tyrosinase Related Proteinâ€1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angewandte Chemie - International Edition, 2017, 56, 9812-9815.	13.8	139
47	Crystallographic Studies of the Interaction of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 with Natural Substrates and Products. Journal of Biological Chemistry, 1995, 270, 29256-29264.	3.4	131
48	Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. FEBS Journal, 1998, 254, 333-340.	0.2	128
49	The quorum-quenching <i>N</i> -acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 686-691.	7.1	124
50	Topological characterization and modeling of the 3D structure of lipase fromPseudomonas aeruginosa. FEBS Letters, 1993, 332, 143-149.	2.8	112
51	Enhanced activity and altered specificity of phospholipase A2 by deletion of a surface loop. Science, 1989, 244, 82-85.	12.6	111
52	The Cyclization Mechanism of Cyclodextrin Glycosyltransferase (CGTase) as Revealed by a γ-Cyclodextrin-CGTase Complex at 1.8-à Resolution. Journal of Biological Chemistry, 1999, 274, 34868-34876.	3.4	111
53	Structure of the 70-kDa Soluble Lytic Transglycosylase Complexed with Bulgecin A. Implications for the Enzymic Mechanism. Biochemistry, 1995, 34, 12729-12737.	2.5	110
54	High resolution crystal structures of the Escherichia coli lytic transglycosylase slt70 and its complex with a peptidoglycan fragment. Journal of Molecular Biology, 1999, 291, 877-898.	4.2	102

#	Article	IF	CITATIONS
55	Structure and mechanism of a bacterial haloalcohol dehalogenase: a new variation of the short-chain dehydrogenase/reductase fold without an NAD(P)H binding site. EMBO Journal, 2003, 22, 4933-4944.	7.8	102
56	Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Journal of Biological Chemistry, 1998, 273, 5771-5779.	3.4	100
57	Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochemical Journal, 1999, 339, 223-226.	3.7	100
58	Protein stabilization by hydrophobic interactions at the surface. FEBS Journal, 1994, 220, 981-985.	0.2	98
59	Three-dimensional Structure of I-2-Haloacid Dehalogenase from Xanthobacter autotrophicus GJ10 Complexed with the Substrate-analogue Formate. Journal of Biological Chemistry, 1997, 272, 33015-33022.	3.4	97
60	X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecular and isomorphous replacement techniques. Journal of Molecular Biology, 1989, 206, 365-379.	4.2	95
61	Role of the N-terminus in the interaction of pancreatic phospholipase A2 with aggregated substrates. Properties and crystal structure of transaminated phospholipase A2. Biochemistry, 1984, 23, 2759-2766.	2.5	94
62	Hydrophobic Amino Acid Residues in the Acceptor Binding Site Are Main Determinants for Reaction Mechanism and Specificity of Cyclodextrin-glycosyltransferase. Journal of Biological Chemistry, 2001, 276, 44557-44562.	3.4	93
63	Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site. Biochemistry, 1993, 32, 9031-9037.	2.5	92
64	Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 2000, 296, 1027-1038.	4.2	89
65	The Active Site Topology of Aspergillus nigerEndopolygalacturonase II as Studied by Site-directed Mutagenesis. Journal of Biological Chemistry, 2000, 275, 691-696.	3.4	88
66	Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme. Journal of Biological Chemistry, 2011, 286, 3520-3530.	3.4	88
67	EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates. FEBS Journal, 2002, 269, 2971-2979.	0.2	87
68	Crystal Structure at 2.3 Ã Resolution and Revised Nucleotide Sequence of the Thermostable Cyclodextrin Glycosyltransferase fromThermoanaerobacterium thermosulfurigenesEM1. Journal of Molecular Biology, 1996, 256, 611-622.	4.2	84
69	Formation of the Productive ATP-Mg 2+ -bound Dimer of GlcV, an ABC-ATPase from Sulfolobus solfataricus. Journal of Molecular Biology, 2003, 334, 255-267.	4.2	84
70	Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon–halogen bond. Current Opinion in Structural Biology, 2003, 13, 722-730.	5.7	82
71	Structural insights into the processivity of endopolygalacturonase I fromAspergillus niger. FEBS Letters, 2003, 554, 462-466.	2.8	82
72	Crystal Structure of Concanavalin B at 1.65 Ã Resolution. An "Inactivated" Chitinase from Seeds ofCanavalia ensiformis. Journal of Molecular Biology, 1995, 254, 237-246.	4.2	81

#	Article	IF	CITATIONS
73	Structures of Maltohexaose and Maltoheptaose Bound at the Donor Sites of Cyclodextrin Glycosyltransferase Give Insight into the Mechanisms of Transglycosylation Activity and Cyclodextrin Size Specificityâ€,‡. Biochemistry, 2000, 39, 7772-7780.	2.5	81
74	The 1.7 Ã crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. Journal of Molecular Biology, 1999, 289, 319-333.	4.2	80
75	Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure, 1999, 7, 1167-1180.	3.3	79
76	Crystal Structure of Quinohemoprotein Alcohol Dehydrogenase from Comamonas testosteroni. Journal of Biological Chemistry, 2002, 277, 3727-3732.	3.4	78
77	Functional and Structural Characterization of α-(1→2) Branching Sucrase Derived from DSR-E Glucansucrase. Journal of Biological Chemistry, 2012, 287, 7915-7924.	3.4	78
78	Bacterial phospholipase A: structure and function of an integral membrane phospholipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1488, 91-101.	2.4	77
79	Crystal structure of bovine pancreatic phospholipase A2 covalently inhibited by p-bromo-phenacyl-bromide. Journal of Molecular Biology, 1988, 200, 181-188.	4.2	76
80	Characterization of the β-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies. Protein Engineering, Design and Selection, 2000, 13, 857-863.	2.1	76
81	Trapping and Characterization of the Reaction Intermediate in Cyclodextrin Glycosyltransferase by Use of Activated Substrates and a Mutant Enzymeâ€. Biochemistry, 1997, 36, 9927-9934.	2.5	75
82	Functional Analysis of the Copper-Dependent Quercetin 2,3-Dioxygenase. 1. Ligand-Induced Coordination Changes Probed by X-ray Crystallography:Â Inhibition, Ordering Effect, and Mechanistic Insightsâ€. Biochemistry, 2002, 41, 7955-7962.	2.5	73
83	Expression and characterization of active site mutants of hevamine, a chitinase from the rubber treeHevea brasiliensis. FEBS Journal, 2002, 269, 893-901.	0.2	72
84	Crystal Structures of Intermediates in the Dehalogenation of Haloalkanoates by l-2-Haloacid Dehalogenase. Journal of Biological Chemistry, 1999, 274, 30672-30678.	3.4	71
85	Kinetic Characterization and X-ray Structure of a Mutant of Haloalkane Dehalogenase with Higher Catalytic Activity and Modified Substrate Rangeâ€,‡. Biochemistry, 1996, 35, 13186-13195.	2.5	70
86	Bacterial lipases for biotechnological applications. Journal of Molecular Catalysis B: Enzymatic, 1997, 3, 3-12.	1.8	70
87	Structural Basis for the Enantioselectivity of an Epoxide Ring Opening Reaction Catalyzed by Halo Alcohol Dehalogenase HheC. Journal of the American Chemical Society, 2005, 127, 13338-13343.	13.7	70
88	Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochemical Journal, 1999, 339, 223.	3.7	67
89	AcmD, a Homolog of the Major Autolysin AcmA of Lactococcus lactis, Binds to the Cell Wall and Contributes to Cell Separation and Autolysis. PLoS ONE, 2013, 8, e72167.	2.5	66
90	Mutation of Tyrosine Residues Involved in the Alkylation Half Reaction of Epoxide Hydrolase from Agrobacterium radiobacter AD1 Results in Improved Enantioselectivity. Journal of the American Chemical Society, 1999, 121, 7417-7418.	13.7	65

#	Article	IF	CITATIONS
91	Crystallographic Studies of the Interactions of Escherichia coli Lytic Transglycosylase Slt35 with Peptidoglycan,. Biochemistry, 2000, 39, 1924-1934.	2.5	65
92	Reducing virulence of the human pathogen <i>Burkholderia</i> by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1568-1573.	7.1	65
93	Directed Evolution of an EnantioselectiveBacillus subtilisLipase. Biocatalysis and Biotransformation, 2003, 21, 67-73.	2.0	64
94	Directed Evolution of Bacillus subtilis Lipase A by Use of Enantiomeric Phosphonate Inhibitors: Crystal Structures and Phage Display Selection. ChemBioChem, 2006, 7, 149-157.	2.6	64
95	Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine: A covalent cofactor-inhibitor complex. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11787-11791.	7.1	63
96	Three-way Stabilization of the Covalent Intermediate in Amylomaltase, an α-Amylase-like Transglycosylase. Journal of Biological Chemistry, 2007, 282, 17242-17249.	3.4	63
97	Crystal Structure of Inulosucrase from Lactobacillus: Insights into the Substrate Specificity and Product Specificity of GH68 Fructansucrases. Journal of Molecular Biology, 2011, 412, 80-93.	4.2	63
98	Structural Basis of Phospholipase Activity of Staphylococcus hyicus lipase. Journal of Molecular Biology, 2007, 371, 447-456.	4.2	60
99	A Novel Genetic Selection System for Improved Enantioselectivity of <i>Bacillus subtilis</i> Lipase A. ChemBioChem, 2008, 9, 1110-1115.	2.6	60
100	Kinetic Analysis and X-ray Structure of Haloalkane Dehalogenase with a Modified Halide-Binding Site. Biochemistry, 1998, 37, 15013-15023.	2.5	57
101	Reassessment of Acarbose as a Transition State Analogue Inhibitor of Cyclodextrin Glycosyltransferaseâ€. Biochemistry, 1998, 37, 17192-17198.	2.5	57
102	The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. FEBS Journal, 2000, 267, 3432-3441.	0.2	57
103	Conversion of Cyclodextrin Glycosyltransferase into a Starch Hydrolase by Directed Evolution:  The Role of Alanine 230 in Acceptor Subsite +1,. Biochemistry, 2003, 42, 7518-7526.	2.5	57
104	Crystal Structure of MltA from Escherichia coli Reveals a Unique Lytic Transglycosylase Fold. Journal of Molecular Biology, 2005, 352, 1068-1080.	4.2	56
105	Lipolytic enzymes LipA and LipB fromBacillus subtilisdiffer in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Letters, 2001, 502, 89-92.	2.8	55
106	Improved Catalytic Properties of Halohydrin Dehalogenase by Modification of the Halide-Binding Site. Biochemistry, 2005, 44, 6609-6618.	2.5	53
107	Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 2012, 30, 366-376.	2.0	53
108	Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies. PLoS ONE, 2016, 11, e0161697.	2.5	51

#	Article	IF	CITATIONS
109	Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Reports, 2004, 5, 477-483.	4.5	50
110	The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease. Protein Engineering, Design and Selection, 1992, 5, 421-426.	2.1	49
111	The structure of the Escherichia coli phosphotransferase IIAmannitol reveals a novel fold with two conformations of the active site. Structure, 1998, 6, 377-388.	3.3	49
112	Biophysical characterization of mutants of <i>Bacillus subtilis</i> lipase evolved for thermostability: Factors contributing to increased activity retention. Protein Science, 2012, 21, 487-497.	7.6	49
113	Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140312.	2.3	49
114	A crystallographic study of Cys69Ala flavodoxin II fromAzotobacter vinelandii: Structural determinants of redox potential. Protein Science, 2005, 14, 2284-2295.	7.6	48
115	Mechanismâ€Inspired Engineering of Phenylalanine Aminomutase for Enhanced βâ€Regioselective Asymmetric Amination of Cinnamates. Angewandte Chemie - International Edition, 2012, 51, 482-486.	13.8	48
116	Crystal Structure and Site-directed Mutagenesis of 3-Ketosteroid Δ1-Dehydrogenase from Rhodococcus erythropolis SQ1 Explain Its Catalytic Mechanism. Journal of Biological Chemistry, 2013, 288, 35559-35568.	3.4	48
117	Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. FEBS Letters, 2002, 514, 189-192.	2.8	47
118	Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 2002, 26, 37-46.	5.0	47
119	Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochemical Journal, 2008, 413, 517-525.	3.7	47
120	Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from <i>Lactobacillus reuteri</i> 121. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1448-1454.	0.7	47
121	Identification of Acceptor Substrate Binding Subsites +2 and +3 in the Amylomaltase from Thermus thermophilus HB8. Biochemistry, 2007, 46, 5261-5269.	2.5	46
122	Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view. Applied Microbiology and Biotechnology, 2011, 92, 921-928.	3.6	46
123	Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Structure, 2017, 25, 231-242.	3.3	45
124	Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions. Protein Science, 2000, 9, 1265-1273.	7.6	44
125	Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the 1±-amylase family. Enzyme and Microbial Technology, 2002, 30, 295-304.	3.2	44
126	Structural and Mutational Characterization of the Catalytic A-module of the Mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. Journal of Biological Chemistry, 2008, 283, 23819-23828.	3.4	44

#	Article	IF	CITATIONS
127	Biocatalytic and Structural Properties of a Highly Engineered Halohydrin Dehalogenase. ChemBioChem, 2013, 14, 870-881.	2.6	44
128	Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus. Protein Engineering, Design and Selection, 1992, 5, 405-411.	2.1	43
129	The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure, 1997, 5, 217-225.	3.3	43
130	X-ray structure of antistasin at 1.9Aresolution and its modelled complex with blood coagulation factorXa. EMBO Journal, 1997, 16, 5151-5161.	7.8	43
131	The Remote Substrate Binding Subsite â``6 in Cyclodextrin-glycosyltransferase Controls the Transferase Activity of the Enzyme via an Induced-fit Mechanism. Journal of Biological Chemistry, 2002, 277, 1113-1119.	3.4	43
132	β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides. International Journal of Molecular Sciences, 2019, 20, 5524.	4.1	43
133	Computation of Bhat's OMIT maps with different coefficients. Journal of Applied Crystallography, 1997, 30, 396-399.	4.5	42
134	The X-ray Structure of trans-3-Chloroacrylic Acid Dehalogenase Reveals a Novel Hydration Mechanism in the Tautomerase Superfamily. Journal of Biological Chemistry, 2004, 279, 11546-11552.	3.4	42
135	â€~Holy' proteins II: the soluble lytic transglycosylase. Current Opinion in Structural Biology, 1994, 4, 810-813.	5.7	41
136	Binding of calcium in the EF-hand ofEscherichia colilytic transglycosylase Slt35 is important for stability. FEBS Letters, 1999, 458, 429-435.	2.8	39
137	Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches. International Journal of Molecular Sciences, 2012, 13, 10537-10552.	4.1	39
138	Protein engineering of the high-alkaline serine protease PB92 from Bacillus alcalophilus: functional and structural consequences of mutation at the S4 substrate binding pocket. Protein Engineering, Design and Selection, 1992, 5, 413-420.	2.1	38
139	Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. FEBS Journal, 2002, 270, 155-162.	0.2	38
140	Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Proteins: Structure, Function and Bioinformatics, 2003, 54, 128-134.	2.6	38
141	Functional Analysis of the Copper-Dependent Quercetin 2,3-Dioxygenase. 2. X-ray Absorption Studies of Native Enzyme and Anaerobic Complexes with the Substrates Quercetin and Myricetinâ€. Biochemistry, 2002, 41, 7963-7968.	2.5	37
142	The Sequence and Crystal Structure of the α-Amino Acid Ester Hydrolase from Xanthomonas citri Define a New Family of β-Lactam Antibiotic Acylases. Journal of Biological Chemistry, 2003, 278, 23076-23084.	3.4	37
143	Enzyme kinetics of hevamine, a chitinase from the rubber treeHevea brasiliensis. FEBS Letters, 2000, 478, 119-122.	2.8	36
144	Crystal Structure and Biochemical Properties of a Novel Thermostable Esterase Containing an Immunoglobulin-Like Domain. Journal of Molecular Biology, 2009, 385, 949-962.	4.2	36

#	Article	IF	CITATIONS
145	Loop Grafting of Bacillus subtilis Lipase A: Inversion of Enantioselectivity. Chemistry and Biology, 2008, 15, 782-789.	6.0	35
146	Crystallization of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. Journal of Molecular Biology, 1988, 200, 611-612.	4.2	34
147	Structure of an engineered porcine phospholipase A2 with enhanced activity at 2·1 à resolution. Journal of Molecular Biology, 1990, 216, 425-439.	4.2	34
148	Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase. Proteins: Structure, Function and Bioinformatics, 2001, 43, 327-335.	2.6	34
149	Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli. Journal of Molecular Biology, 2001, 309, 477-489.	4.2	33
150	The X-Ray Structure of the Haloalcohol Dehalogenase HheA from Arthrobacter sp. Strain AD2: Insight into Enantioselectivity and Halide Binding in the Haloalcohol Dehalogenase Family. Journal of Bacteriology, 2006, 188, 4051-4056.	2.2	33
151	Crystal Structures of Native and Inactivated cis-3-Chloroacrylic Acid Dehalogenase. Journal of Biological Chemistry, 2007, 282, 2440-2449.	3.4	33
152	Structure of Escherichia coli Lytic Transglycosylase MltA with Bound Chitohexaose. Journal of Biological Chemistry, 2007, 282, 21197-21205.	3.4	33
153	The structure–function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Engineering, Design and Selection, 1994, 7, 523-529.	2.1	32
154	Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochemical Journal, 2007, 403, 421-430.	3.7	32
155	Crystallization of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Journal of Molecular Biology, 1990, 212, 441-443.	4.2	31
156	Biochemical and crystallographic characterization of a glucansucrase fromLactobacillus reuteri180. Biocatalysis and Biotransformation, 2008, 26, 12-17.	2.0	31
157	The three-dimensional structure of the nitrogen regulatory protein IIA Ntr from Escherichia coli 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 279, 245-255.	4.2	30
158	Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1273-1290.	2.5	30
159	Structural Determinants of the β-Selectivity of a Bacterial Aminotransferase. Journal of Biological Chemistry, 2012, 287, 28495-28502.	3.4	30
160	Biochemical Properties and Crystal Structure of a β-Phenylalanine Aminotransferase from Variovorax paradoxus. Applied and Environmental Microbiology, 2013, 79, 185-195.	3.1	29
161	The role and mechanism of microbial 3-ketosteroid Δ1-dehydrogenases in steroid breakdown. Journal of Steroid Biochemistry and Molecular Biology, 2019, 191, 105366.	2.5	29
162	Bacterial lipases. FEMS Microbiology Reviews, 1994, 15, 29-63.	8.6	29

#	Article	IF	CITATIONS
163	An interactive graphics system for comparing the model building of macromolecules. Journal of Applied Crystallography, 1981, 14, 274-279.	4.5	28
164	Crystal Structure of the Leucine Aminopeptidase from Pseudomonas putida Reveals the Molecular Basis for its Enantioselectivity and Broad Substrate Specificity. Journal of Molecular Biology, 2010, 398, 703-714.	4.2	28
165	Structural Basis of the Substrate Range and Enantioselectivity of Two (<i>S</i>)-Selective ω-Transaminases. Biochemistry, 2016, 55, 4422-4431.	2.5	28
166	Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase. Protein Engineering, Design and Selection, 2004, 17, 473-480.	2.1	27
167	Acetobacter turbidans α-Amino Acid Ester Hydrolase. Journal of Biological Chemistry, 2006, 281, 5804-5810.	3.4	27
168	The crystal structure of a hyperthermoactive exopolygalacturonase from <i>Thermotoga maritima</i> reveals a unique tetramer. FEBS Letters, 2009, 583, 3665-3670.	2.8	27
169	Redesign of a Phenylalanine Aminomutase into a Phenylalanine Ammonia Lyase. ChemCatChem, 2013, 5, 1797-1802.	3.7	27
170	Accelerated X-ray Structure Elucidation of a 36â€kDa Muramidase/Transglycosylase Using wARP. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 58-73.	2.5	26
171	X-ray structure of bovine pancreatic phospholipase A2at atomic resolution. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 516-526.	2.5	26
172	Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri. EMBO Reports, 2006, 7, 794-799.	4.5	26
173	Crystallization and preliminary X-ray crystallographic analysis of tyrosinase from the mushroom <i>Agaricus bisporus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 575-578.	0.7	26
174	Unusual Catalytic Triad of Escherichia coli Outer Membrane Phospholipase A. Biochemistry, 2000, 39, 10017-10022.	2.5	25
175	The fully conserved Asp residue in conserved sequence region I of the α-amylase family is crucial for the catalytic site architecture and activity. FEBS Letters, 2003, 541, 47-51.	2.8	25
176	Structure and Catalytic Mechanism of 3-Ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 Genome. Journal of Biological Chemistry, 2012, 287, 30975-30983.	3.4	25
177	Structural basis of product inhibition by arabinose and xylose of the thermostable CH43 β-1,4-xylosidase from Geobacillus thermoleovorans IT-08. PLoS ONE, 2018, 13, e0196358.	2.5	25
178	Structures of an Isopenicillin N Converting Ntn-Hydrolase Reveal Different Catalytic Roles for the Active Site Residues of Precursor and Mature Enzyme. Structure, 2010, 18, 301-308.	3.3	24
179	Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation. Nature Communications, 2015, 6, 8930.	12.8	24
180	Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 1035-1042.	1.8	23

#	Article	IF	CITATIONS
181	The role of conserved inulosucrase residues in the reaction and product specificity of <i>Lactobacillusâ€freuteri</i> inulosucrase. FEBS Journal, 2012, 279, 3612-3621.	4.7	23
182	Enhancement of the enantioselectivity of carboxylesterase A by structure-based mutagenesis. Journal of Biotechnology, 2012, 158, 36-43.	3.8	23
183	Ironing out Their Differences: Dissecting the Structural Determinants of a Phenylalanine Aminomutase and Ammonia Lyase. ACS Chemical Biology, 2015, 10, 989-997.	3.4	23
184	Novel Biocatalysts by Identification and Design. Biocatalysis and Biotransformation, 2004, 22, 141-146.	2.0	22
185	Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism. Journal of Biological Chemistry, 2013, 288, 26764-26774.	3.4	22
186	The light subunit of mushroom Agaricus bisporus tyrosinase: Its biological characteristics and implications. International Journal of Biological Macromolecules, 2017, 102, 308-314.	7.5	22
187	Flexibility of truncated and fullâ€length glucansucrase <scp>GTF</scp> 180 enzymes from <i>LactobacillusÂreuteri</i> 180. FEBS Journal, 2014, 281, 2159-2171.	4.7	21
188	Structural Investigations into the Stereochemistry and Activity of a Phenylalanine-2,3-aminomutase from <i>Taxus chinensis</i> . Biochemistry, 2014, 53, 3187-3198.	2.5	21
189	Structural investigations of the regio- and enantioselectivity of lipases. Chemistry and Physics of Lipids, 1998, 93, 115-122.	3.2	20
190	Crystallographic and Kinetic Evidence of a Collision Complex Formed during Halide Import in Haloalkane Dehalogenaseâ€. Biochemistry, 1999, 38, 12052-12061.	2.5	20
191	Detergent organisation in crystals of monomeric outer membrane phospholipase A. Journal of Structural Biology, 2003, 141, 122-131.	2.8	20
192	Fortuitous structure determination of `as-isolated'Escherichia colibacterioferritin in a novel crystal form. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1061-1066.	0.7	20
193	Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 567-575.	2.3	20
194	Crystal Structure of a Porcine Pancreatic Phospholipase A2 Mutant. Journal of Molecular Biology, 1993, 232, 839-855.	4.2	18
195	Three-dimensional structures of enzymes useful for ?-lactam antibiotic production. Current Opinion in Biotechnology, 2004, 15, 356-363.	6.6	18
196	Application of microbial 3-ketosteroid Δ1-dehydrogenases in biotechnology. Biotechnology Advances, 2021, 49, 107751.	11.7	18
197	Polypeptide chains with similar amino acid sequences but a distinctly different conformation. FEBS Letters, 1983, 164, 25-27.	2.8	17
198	Maltodextrin-dependent crystallization of cyclomaltodextrin glucanotransferase from Bacillus circulans. Journal of Molecular Biology, 1990, 214, 807-809.	4.2	17

#	Article	IF	CITATIONS
199	Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase fromAgrobacterium radiobacterAD1. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 176-178.	2.5	17
200	Two Major Archaeal Pseudomurein Endoisopeptidases: PeiW and PeiP. Archaea, 2010, 2010, 1-4.	2.3	17
201	Crystal structure of quinoneâ€dependent alcohol dehydrogenase from <scp><i>P</i></scp> <i>seudogluconobacter saccharoketogenes</i> . A versatile dehydrogenase oxidizing alcohols and carbohydrates. Protein Science, 2015, 24, 2044-2054.	7.6	17
202	X-ray crystallographic validation of structure predictions used in computational design for protein stabilization. Proteins: Structure, Function and Bioinformatics, 2015, 83, 940-951.	2.6	17
203	Introduction of disulfide bonds into Bacillus subtilis neutral protease. Protein Engineering, Design and Selection, 1993, 6, 521-527.	2.1	16
204	Purification, Crystallization and Preliminary X-ray Analysis of Penicillin Binding Protein 4 fromEschericha coli,a Protein Related to Class A β-Lactamases. Journal of Molecular Biology, 1995, 247, 149-153.	4.2	16
205	Crystal structure of a murine α-class glutathioneS-transferase involved in cellular defense against oxidative stress. FEBS Letters, 1998, 422, 285-290.	2.8	16
206	Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. Journal of Biotechnology, 2003, 103, 203-212.	3.8	16
207	Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ ¹ -dehydrogenase from <i>Rhodococcus erythropolis</i> SQ1. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 551-556.	0.7	16
208	A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus. Biochemical and Biophysical Research Communications, 2016, 473, 1090-1093.	2.1	16
209	Crystallization and preliminary X-ray analysis of outer membrane phospholipase A from Escherichia coli. FEBS Letters, 1995, 373, 10-12.	2.8	15
210	Acetobacter turbidansα-amino acid ester hydrolase: merohedral twinning inP21obscured by pseudo-translational NCS. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2237-2241.	2.5	15
211	Use of electron microscopy in the examination of lattice defects in crystals of alcohol oxidase. FEBS Letters, 1989, 244, 213-216.	2.8	14
212	Crystal structure of endoâ€xylogalacturonan hydrolase from <i>Aspergillus tubingensis</i> . FEBS Journal, 2013, 280, 6061-6069.	4.7	14
213	Crystallization and Preliminary X-ray Analysis of a Lipase from Bacillus subtilis. Journal of Molecular Biology, 1994, 238, 857-859.	4.2	13
214	Crystallization and preliminary Xâ€ray analysis of Lâ€2â€haloacid dehalogenase from <i>xanthobacter autotrophicus</i> GJ10. Protein Science, 1995, 4, 2619-2620.	7.6	13
215	Structural investigations of the active-site mutant Asn156Ala of outer membrane phospholipase A: Function of the Asn-His interaction in the catalytic triad. Protein Science, 2001, 10, 1962-1969.	7.6	13
216	Phenylthiourea Binding to Human Tyrosinase-Related Protein 1. International Journal of Molecular Sciences, 2020, 21, 915.	4.1	13

#	Article	IF	CITATIONS
217	Crystallization of the soluble lytic transglycosylase from Escherichia coli K12. Journal of Molecular Biology, 1990, 212, 557-559.	4.2	12
218	Crystallization and Preliminary X-Ray Analysis of a Lipase from Staphylococcus hyicus. Journal of Structural Biology, 1995, 114, 153-155.	2.8	12
219	Structure of Human Tyrosinase Related Proteinâ€1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angewandte Chemie, 2017, 129, 9944-9947.	2.0	12
220	Escherichia coliMltA: MAD phasing and refinement of a tetartohedrally twinned protein crystal structure. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 613-621.	2.5	11
221	An approach to prevent aggregation during the purification and crystallization of wild type acyl coenzyme A: Isopenicillin N acyltransferase from Penicillium chrysogenum. Protein Expression and Purification, 2005, 41, 61-67.	1.3	10
222	Effect of introducing a disulphide bond between the A and C domains on the activity and stability of Saccharomycopsis fibuligera R64 α-amylase. Journal of Biotechnology, 2015, 195, 8-14.	3.8	10
223	Crystallization and Preliminary Crystallographic Characterization of Endo-polygalacturonase II from Aspergillus niger. Journal of Molecular Biology, 1994, 243, 351-352.	4.2	9
224	A genetically engineered protein domain binding to bacterial murein, archaeal pseudomurein, and fungal chitin cell wall material. Applied Microbiology and Biotechnology, 2012, 96, 729-737.	3.6	9
225	Crystal structure of recombinant tyrosinase-binding protein MtaL at 1.35â€Ã resolution. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 244-250.	0.8	9
226	Structure and Catalytic Mechanism of 3-Ketosteroid Dehydrogenases. Procedia Chemistry, 2016, 18, 3-11.	0.7	9
227	Non-covalent binding of the heavy atom compound [Au(CN)2]â^'at the halide binding site of haloalkane dehalogenase fromXanthobacter autotrophicusGJ10. FEBS Letters, 1993, 323, 267-270.	2.8	8
228	Crystallization of Enzyme IIB of the Cellobiose-specific Phosphotransferase System of Escherichia coli. Journal of Molecular Biology, 1994, 239, 588-590.	4.2	8
229	The functional importance of structural differences between the mannitolâ€specific IIA ^{mannitol} and the regulatory IIA ^{nitrogen} . Protein Science, 1998, 7, 2210-2216.	7.6	8
230	Purification, crystallization and preliminary X-ray diffraction analysis of an archaeal ABC-ATPase. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 362-365.	2.5	8
231	Purification, crystallization and preliminary X-ray diffraction of Cys103Ala acyl coenzyme A:isopenicillin N acyltransferase fromPenicillium chrysogenum. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 716-718.	2.5	8
232	Single-Crystal EPR Study at 95GHz of the Type 2 Copper Site of the Inhibitor-Bound Quercetin 2,3-Dioxygenase. Biophysical Journal, 2003, 85, 4047-4054.	0.5	8
233	Structural investigation of the transmembrane C domain of the mannitol permease from Escherichia coli using 5-FTrp fluorescence spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 861-868.	2.6	8
234	Crystallization of the A-domain of the mannitol transport protein enzyme IImtl. Journal of Molecular Biology, 1992, 228, 310-312.	4.2	7

#	Article	IF	CITATIONS
235	Preliminary X-ray Study of Naproxen Esterase from Bacillus subtilis. Journal of Molecular Biology, 1993, 230, 681-683.	4.2	7
236	Crystallization and preliminary crystallographic analysis of an esterase with a novel domain from the hyperthermophile <i>Thermotoga maritima</i> . Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 777-779.	0.7	7
237	A Minimum of Three Motifs Is Essential for Optimal Binding of Pseudomurein Cell Wall-Binding Domain of Methanothermobacter thermautotrophicus. PLoS ONE, 2011, 6, e21582.	2.5	7
238	Study of response of Swiss Webster mice to light subunit of mushroom tyrosinase. Biotechnic and Histochemistry, 2017, 92, 411-416.	1.3	7
239	Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 β-xylosidase fromGeobacillus thermoleovoransIT-08. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 932-935.	0.7	5
240	Biochemical characterization of a glucoamylase from Saccharomycopsis fibuligera R64. Biologia (Poland), 2011, 66, 27-32.	1.5	5
241	Crystallization of Porcine Liver Ribonuclease Inhibitor a Member of the Family of Proteins Containing Leucine-rich Repeats. Journal of Molecular Biology, 1993, 231, 505-508.	4.2	4
242	X-ray analysis of two antibiotic-synthesizing bacterial ester hydrolases: preliminary results. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 158-160.	2.5	4
243	Oils used in microbatch crystallization do not remove a detergent from the drops they cover. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2345-2347.	2.5	4
244	Purification, crystallization and preliminary X-ray analysis of the lytic transglycosylase MltA fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 758-760.	2.5	4
245	Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ ⁴ -(5α)-dehydrogenase from <i>Rhodococcus jostii</i> RHA1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1269-1273.	0.7	4
246	Mutation Analysis of the pKa Modulator Residue in β-D-xylosidase from Geobacillus Thermoleovorans IT-08: Activity Adaptation to Alkaline and High-Temperature Conditions. Procedia Chemistry, 2016, 18, 39-48.	0.7	4
247	Relationship of Agaricus bisporus mannose-binding protein to lectins with β-trefoil fold. Biochemical and Biophysical Research Communications, 2020, 527, 1027-1032.	2.1	4
248	Crystallization and preliminary crystallographic analysis ofendo-1,4-β-xyalanase I fromAspergillus niger. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 571-576.	2.5	3
249	Functional importance of calcium binding sites in outer membrane phospholipase A. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 230-237.	2.6	3
250	Frontispiece: Structure and Function of Human Tyrosinase and Tyrosinaseâ€Related Proteins. Chemistry - A European Journal, 2018, 24, .	3.3	3
251	Structural Determinants of the Thermostability of thermolysin-Like Bacillus Neutral Proteases. Studies in Organic Chemistry, 1993, , 91-99.	0.2	3
252	An optimal strategy for X-ray data collection on macromolecular crystals with position-sensitive detectors. Journal of Applied Crystallography, 1994, 27, 791-793.	4.5	2

#	Article	IF	CITATIONS
253	Drug or tool, design or serendipity?. Nature Structural and Molecular Biology, 1995, 2, 429-432.	8.2	2
254	Cure for a crisis?. Nature Structural Biology, 1996, 3, 218-221.	9.7	2
255	Crystallization of quinohaemoprotein alcohol dehydrogenase fromComamonas testosteroni: crystals with unique optical properties. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1732-1734.	2.5	2
256	Bovine phospholipase A2 crystals soaked in 30% methanol: the first structure determination with a FAST diffractometer at high resolution. Acta Crystallographica Section B: Structural Science, 1986, 42, 602-605.	1.8	1
257	Protein engineering of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Progress in Biotechnology, 1995, , 165-174.	0.2	1
258	Purification and Light-Scattering Analysis of Penicillin-Binding Protein 4 from <i>Escherichia coli</i> . Microbial Drug Resistance, 1996, 2, 73-76.	2.0	1
259	A strategy for engineering thermostability: the case of cyclodextrin glycosyltransferase. Progress in Biotechnology, 1998, , 317-323.	0.2	1
260	Catalysis and regulation — from structure to function. Current Opinion in Structural Biology, 2003, 13, 706-708.	5.7	1
261	Crystallization and preliminary X-ray analysis of carnein, a serine protease fromIpomoea carnea. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 383-385.	0.7	1
262	Engineering enzymes for the synthesis of semi-synthetic antibiotics. , 2001, , 250-279.		1
263	Movies, metals, bonds and barriers. Current Opinion in Structural Biology, 2001, 11, 655-656.	5.7	0
264	Self-Processing Cysteine-Dependent N-terminal Nucleophile Hydrolases. , 2013, , 3653-3657.		0
265	Structure Determination of Haloalkane Dehalogenase. , 1990, , 583-587.		0