List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chemical Reviews, 2017, 117, 1445-1514.	23.0	658
2	Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chemistry, 2019, 21, 381-405.	4.6	323
3	Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental Chemistry Letters, 2020, 18, 703-727.	8.3	311
4	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	6.4	291
5	Greener synthesis of lignin nanoparticles and their applications. Green Chemistry, 2020, 22, 612-636.	4.6	280
6	MXenes and ultrasonication. Journal of Materials Chemistry A, 2019, 7, 10843-10857.	5.2	230
7	Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6458-6470.	3.2	227
8	Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials, 2018, 8, 634.	1.9	210
9	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141.	1.8	208
10	Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 2070-2103.	2.4	196
11	Recent Advances in the Nanocatalyst-Assisted NaBH ₄ Reduction of Nitroaromatics in Water. ACS Omega, 2019, 4, 483-495.	1.6	180
12	Advanced Metal Matrix Nanocomposites. Metals, 2019, 9, 330.	1.0	174
13	Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 2018, 10, 9-15.	1.6	160
14	Mechanotribological Aspects of MXeneâ€Reinforced Nanocomposites. Advanced Materials, 2020, 32, e2003154.	11.1	160
15	Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chemistry, 2016, 18, 5736-5750.	4.6	158
16	Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid. Journal of Colloid and Interface Science, 2020, 567, 126-135.	5.0	153
17	Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chemistry, 2018, 20, 3809-3817.	4.6	143
18	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136

#	Article	IF	CITATIONS
19	Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products. Applied Sciences (Switzerland), 2018, 8, 411.	1.3	135
20	Plants and plant-based polymers as scaffolds for tissue engineering. Green Chemistry, 2019, 21, 4839-4867.	4.6	131
21	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	11.1	129
22	Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Industrial & Engineering Chemistry Research, 2021, 60, 1112-1136.	1.8	128
23	Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media. Carbohydrate Polymers, 2020, 232, 115819.	5.1	127
24	Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chemistry, 2020, 22, 3668-3692.	4.6	124
25	Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. Nanomaterials, 2020, 10, 1072.	1.9	119
26	Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications. Green Chemistry, 2020, 22, 2643-2661.	4.6	118
27	Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 27821-27852.	4.0	116
28	Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic applications. Journal of Cleaner Production, 2021, 288, 125632.	4.6	113
29	Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth and Design, 2020, 20, 7034-7064.	1.4	112
30	Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chemistry, 2019, 21, 1845-1865.	4.6	109
31	Engineering graphitic carbon nitride (g-C ₃ N ₄) for catalytic reduction of CO ₂ to fuels and chemicals: strategy and mechanism. Green Chemistry, 2021, 23, 5394-5428.	4.6	109
32	Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances, 2018, 36, 1984-2016.	6.0	106
33	Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020, 21, 5126.	1.8	105
34	Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coordination Chemistry Reviews, 2019, 397, 54-75.	9.5	103
35	Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers, 2021, 260, 117809.	5.1	103
36	Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chemical Society Reviews, 2017, 46, 6675-6686.	18.7	102

#	Article	IF	CITATIONS
37	MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Molecular Catalysis, 2020, 486, 110850.	1.0	97
38	Plant-Derived Edible Nanoparticles and miRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 8055-8069.	3.2	95
39	Upgraded Valorization of Biowaste: Laser-Assisted Synthesis of Pd/Calcium Lignosulfonate Nanocomposite for Hydrogen Storage and Environmental Remediation. ACS Omega, 2020, 5, 5888-5899.	1.6	95
40	Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence, 2019, 6, 6.	6.3	94
41	Developments and applications of nanomaterial-based carbon paste electrodes. RSC Advances, 2020, 10, 21561-21581.	1.7	94
42	Iron and Iron Oxide Nanoparticles Synthesized with Green Tea Extract: Differences in Ecotoxicological Profile and Ability To Degrade Malachite Green. ACS Sustainable Chemistry and Engineering, 2018, 6, 8679-8687.	3.2	93
43	One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2019, 539, 161-167.	5.0	90
44	Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere, 2021, 275, 130055.	4.2	89
45	Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water. Applied Sciences (Switzerland), 2019, 9, 4183.	1.3	88
46	Stainless steel mesh-GO/Pd NPs: catalytic applications of Suzuki–Miyaura and Stille coupling reactions in eco-friendly media. Green Chemistry, 2019, 21, 3319-3327.	4.6	86
47	MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomaterials Science and Engineering, 2021, 7, 1900-1913.	2.6	84
48	An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. Chemosphere, 2021, 280, 130907.	4.2	84
49	MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Materials Advances, 2021, 2, 2906-2917.	2.6	82
50	Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis. Applied Sciences (Switzerland), 2013, 3, 656-674.	1.3	81
51	Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chemistry, 2017, 19, 164-168.	4.6	80
52	Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. Journal of Materials Chemistry A, 2020, 8, 10571-10603.	5.2	80
53	Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 3964-3990.	2.4	80
54	Green and Size-Specific Synthesis of Stable Fe–Cu Oxides as Earth-Abundant Adsorbents for Malachite Green Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 9229-9236.	3.2	79

#	Article	IF	CITATIONS
55	Bacteria in Heavy Metal Remediation and Nanoparticle Biosynthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 5395-5409.	3.2	79
56	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	18.7	79
57	Hydroxylation of Benzene via C–H Activation Using Bimetallic CuAg@g-C ₃ N ₄ . ACS Sustainable Chemistry and Engineering, 2017, 5, 3637-3640.	3.2	78
58	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	2.3	78
59	Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chemistry, 2020, 22, 5902-5936.	4.6	75
60	Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomaterials Science and Engineering, 2021, 7, 3053-3068.	2.6	74
61	Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite Fe ₃ O ₄ /Cu-BDC/GO Nanocatalyst. ACS Omega, 2020, 5, 5182-5191.	1.6	73
62	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	4.6	72
63	Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere, 2020, 246, 125755.	4.2	71
64	Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. Molecular Catalysis, 2020, 495, 111133.	1.0	70
65	Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustainable Chemistry and Engineering, 2021, 9, 3-49.	3.2	70
66	An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chemistry, 2021, 23, 1312-1329.	4.6	69
67	Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6481-6498.	2.5	68
68	In Situ Generation of Pd–Pt Core–Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Interfaces, 2017, 9, 2815-2824.	4.0	67
69	Recent advances in <i>N</i> -formylation of amines and nitroarenes using efficient (nano)catalysts in eco-friendly media. Green Chemistry, 2019, 21, 5144-5167.	4.6	67
70	Biofactories: engineered nanoparticles <i>via</i> genetically engineered organisms. Green Chemistry, 2019, 21, 4583-4603.	4.6	64
71	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
72	Applications of nano-materials in diverse dentistry regimes. RSC Advances, 2020, 10, 15430-15460.	1.7	62

#	Article	IF	CITATIONS
73	Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide. Green Chemistry, 2016, 18, 4855-4858.	4.6	61
74	Highly exfoliated Ti ₃ C ₂ T _{<i>x</i>} MXene nanosheets atomically doped with Cu for efficient electrochemical CO ₂ reduction: an experimental and theoretical study. Journal of Materials Chemistry A, 2022, 10, 1965-1975.	5.2	60
75	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	4.6	59
76	Trimetallic Nanoparticles: Greener Synthesis and Their Applications. Nanomaterials, 2020, 10, 1784.	1.9	59
77	Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere, 2020, 258, 127324.	4.2	59
78	Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers, 2020, 12, 512.	2.0	59
79	Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 2019, 21, 6043-6050.	4.6	58
80	Recent Advances in Rechargeable Aluminum-Ion Batteries and Considerations for Their Future Progress. ACS Applied Energy Materials, 2020, 3, 6019-6035.	2.5	58
81	Magnetic Lignosulfonate-Supported Pd Complex: Renewable Resource-Derived Catalyst for Aqueous Suzuki–Miyaura Reaction. ACS Omega, 2019, 4, 14234-14241.	1.6	57
82	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	2.3	57
83	Pd nanoparticles stabilized on the Schiff base-modified boehmite: Catalytic role in Suzuki coupling reaction and reduction of nitroarenes. Journal of Organometallic Chemistry, 2019, 900, 120916.	0.8	56
84	Applications of plant-based nanoparticles in nanomedicine: A review. Sustainable Chemistry and Pharmacy, 2022, 25, 100606.	1.6	55
85	+Iron hexacyanocobaltate metal-organic framework: Highly reversible and stationary electrode material with rich borders for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 791, 911-917.	2.8	54
86	Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines. Chemical Engineering Journal, 2020, 382, 122469.	6.6	54
87	Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere, 2022, 302, 134825.	4.2	53
88	P―and F oâ€doped Carbon Nitride Nanocatalysts for Photocatalytic CO ₂ Reduction and Thermocatalytic Furanics Synthesis from Sugars. ChemSusChem, 2020, 13, 5231-5238.	3.6	52
89	Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food and Chemical Toxicology, 2021, 157, 112576.	1.8	50
90	Core–Shell Nanophotocatalysts: Review of Materials and Applications. ACS Applied Nano Materials, 2022, 5, 55-86.	2.4	49

#	Article	IF	CITATIONS
91	Recent advances in polymer supported palladium complexes as (nano)catalysts for Sonogashira coupling reaction. Molecular Catalysis, 2020, 480, 110645.	1.0	48
92	Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid. Scientific Reports, 2017, 7, 13596.	1.6	47
93	Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chemistry, 2018, 20, 3542-3556.	4.6	47
94	Photocatalytic C H activation and oxidative esterification using Pd@g-C3N4. Catalysis Today, 2018, 309, 248-252.	2.2	45
95	Photo-Fenton like Catalyst System: Activated Carbon/CoFe2O4 Nanocomposite for Reactive Dye Removal from Textile Wastewater. Applied Sciences (Switzerland), 2019, 9, 963.	1.3	45
96	Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 2017, 7, 11585.	1.6	44
97	Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis. European Journal of Operational Research, 2018, 264, 472-490.	3.5	44
98	Two-dimensional boron nitride as a sulfur fixer for high performance rechargeable aluminum-sulfur batteries. Scientific Reports, 2019, 9, 13573.	1.6	44
99	Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. Journal of Organic Chemistry, 2021, 86, 13857-13872.	1.7	44
100	Microwave-Assisted Reductive Amination with Aqueous Ammonia: Sustainable Pathway Using Recyclable Magnetic Nickel-Based Nanocatalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 5963-5974.	3.2	43
101	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	3.2	43
102	Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess and Biosystems Engineering, 2019, 42, 2007-2014.	1.7	41
103	Molecularly imprinted polymers for the detection of viruses: challenges and opportunities. Analyst, The, 2021, 146, 3087-3100.	1.7	41
104	Sustainable Strategy Utilizing Biomass: Visible‣ightâ€Mediated Synthesis of γâ€Valerolactone. ChemCatChem, 2016, 8, 690-693.	1.8	40
105	A poly(3-hydroxybutyrate)–chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chemistry, 2018, 20, 4975-4982.	4.6	40
106	Significant Enhancement of Photoactivity in Hybrid TiO ₂ /g-C ₃ N ₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. ACS Applied Nano Materials, 2018, 1, 2526-2535.	2.4	40
107	A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification. Green Chemistry, 2017, 19, 1624-1627.	4.6	38
108	Synthesis of 1-Substituted 1 <i>H</i> -1,2,3,4-Tetrazoles Using Biosynthesized Ag/Sodium Borosilicate Nanocomposite. ACS Omega, 2019, 4, 8985-9000.	1.6	38

#	Article	IF	CITATIONS
109	Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Green Chemistry, 2021, 23, 3439-3458.	4.6	38
110	Eco-Friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by Bio-Based Karaya Gum—Chitosan Sponge. Polymers, 2021, 13, 251.	2.0	38
111	Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5900-5911.	3.2	37
112	Metal-exchanged magnetic β-zeolites: valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chemistry, 2017, 19, 3856-3868.	4.6	35
113	Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS ₂ -Carbon Nanotube Nanocomposite. ACS Omega, 2021, 6, 4641-4648.	1.6	35
114	MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. Materials, 2022, 15, 1666.	1.3	35
115	Copper Oxide Nanoparticles Greener Synthesis Using Tea and its Antifungal Efficiency on <i>Fusarium solani</i> . Geomicrobiology Journal, 2019, 36, 777-781.	1.0	34
116	Cinnamomum tamala Leaf Extract Stabilized Zinc Oxide Nanoparticles: A Promising Photocatalyst for Methylene Blue Degradation. Nanomaterials, 2021, 11, 1558.	1.9	34
117	Greener and Sustainable Chemistry. Applied Sciences (Switzerland), 2014, 4, 493-497.	1.3	33
118	Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting. Green Chemistry, 2020, 22, 1198-1208.	4.6	33
119	Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustainable Chemistry and Pharmacy, 2021, 21, 100412.	1.6	33
120	Smart MXene Quantum Dot-Based Nanosystems for Biomedical Applications. Nanomaterials, 2022, 12, 1200.	1.9	33
121	Bio-inspired sustainable synthesis of silver chloride nanoparticles and their prominent applications. Journal of the Indian Chemical Society, 2022, 99, 100335.	1.3	33
122	Synthesis of nanoparticles using microorganisms and their applications: a review. Environmental Chemistry Letters, 2022, 20, 3153-3197.	8.3	33
123	Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments. Clean Technologies and Environmental Policy, 2019, 21, 1665-1674.	2.1	32
124	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. Green Chemistry, 2021, 23, 6223-6272.	4.6	32
125	Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster. Tetrahedron, 2017, 73, 5577-5580.	1.0	31
126	Associated-risk determinants for anthroponotic cutaneous leishmaniasis treated with meglumine antimoniate: A cohort study in Iran, PLoS Neglected Tropical Diseases, 2019, 13, e0007423	1.3	31

#	Article	IF	CITATIONS
127	Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production. Energies, 2019, 12, 21.	1.6	31
128	Preparation and Characterization of Polyvinylpyrrolidone/Polysulfone Ultrafiltration Membrane Modified by Graphene Oxide and Titanium Dioxide for Enhancing Hydrophilicity and Antifouling Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2213-2223.	1.9	31
129	SARS-CoV-2 (COVID-19): New Discoveries and Current Challenges. Applied Sciences (Switzerland), 2020, 10, 3641.	1.3	31
130	Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. Journal of Medicinal Chemistry, 2022, 65, 2-36.	2.9	31
131	Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: Applications in K3[Fe(CN)6] and Nigrosin reduction. Molecular Catalysis, 2019, 473, 110401.	1.0	30
132	Preparation of Au nanoparticles by Q switched laser ablation and their application in 4-nitrophenol reduction. Clean Technologies and Environmental Policy, 2020, 22, 1715-1724.	2.1	30
133	Improving Wettability: Deposition of TiO2 Nanoparticles on the O2 Plasma Activated Polypropylene Membrane. International Journal of Molecular Sciences, 2019, 20, 3309.	1.8	29
134	Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technologies and Environmental Policy, 2019, 21, 1549-1561.	2.1	29
135	Green chemistry and coronavirus. Sustainable Chemistry and Pharmacy, 2021, 21, 100415.	1.6	29
136	Potential toxicity of nanoparticles on the reproductive system animal models: A review. Journal of Reproductive Immunology, 2021, 148, 103384.	0.8	29
137	Pd Nanocatalyst Adorned on Magnetic Chitosan@N-Heterocyclic Carbene: Eco-Compatible Suzuki Cross-Coupling Reaction. Molecules, 2019, 24, 3048.	1.7	28
138	Efficient degradation of environmental contaminants using Pd-RGO nanocomposite as a retrievable catalyst. Clean Technologies and Environmental Policy, 2020, 22, 325-335.	2.1	28
139	Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS Applied Nano Materials, 2021, 4, 11386-11412.	2.4	28
140	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	4.6	28
141	2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Applied Bio Materials, 2022, 5, 40-58.	2.3	28
142	Natural Moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustainable Chemistry and Pharmacy, 2018, 10, 1-8.	1.6	27
143	Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol. Green Chemistry, 2019, 21, 1253-1257.	4.6	27
144	Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydrate Polymers, 2020, 232, 115806.	5.1	27

RAJENDER S VARMA

#	Article	IF	CITATIONS
145	Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions. Journal of Environmental Chemical Engineering, 2020, 8, 103553.	3.3	27
146	Transition metal-free C-3 functionalization of quinoxalin-2(1 <i>H</i>)-ones: recent advances and sanguine future. New Journal of Chemistry, 2021, 45, 18722-18763.	1.4	27
147	Fabrication of intimately coupled CeO2/ZnFe2O4 nano-heterojunction for visible-light photocatalysis and bactericidal application. Materials Chemistry and Physics, 2022, 279, 125759.	2.0	27
148	Reduction of Hexavalent Chromium Using Sorbaria sorbifolia Aqueous Leaf Extract. Applied Sciences (Switzerland), 2017, 7, 715.	1.3	26
149	Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. Molecular Catalysis, 2020, 492, 110967.	1.0	26
150	Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Applied Catalysis B: Environmental, 2020, 277, 119248.	10.8	26
151	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	5.2	26
152	Designing Z-scheme AgIO4 nanorod embedded with Bi2S3 nanoflakes for expeditious visible light photodegradation of congo red and rhodamine B. Chemosphere, 2022, 294, 133755.	4.2	26
153	Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials, 2022, 12, 2440.	1.9	26
154	Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework. Scientific Reports, 2017, 7, 655.	1.6	25
155	Structural Evolution of Organic Matter in Deep Shales by Spectroscopy (¹ H and) Tj ETQq1 1 0.7843	14 rgBT /(2.5	Overlock 10 25
156	Prussian blue-based nanostructured materials: Catalytic applications for environmental remediation and energy conversion. Molecular Catalysis, 2021, 514, 111835.	1.0	24
157	A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling reactions: synthesis of abemaciclib and fedratinib. Green Chemistry, 2021, 23, 5222-5229.	4.6	24
158	Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage. ACS Omega, 2019, 4, 21410-21416.	1.6	23
159	Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chemistry, 2022, 24, 1190-1210.	4.6	23
160	Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. Materials Advances, 2022, 3, 4765-4782.	2.6	23
161	MXenes in photomedicine: advances and prospects. Chemical Communications, 2022, 58, 7336-7350.	2.2	23
162	A rapid flow strategy for the oxidative cyanation of secondary and tertiary amines via C-H activation. Scientific Reports, 2017, 7, 16311.	1.6	22

#	Article	IF	CITATIONS
163	Important Roles of Oligo- and Polysaccharides against SARS-CoV-2: Recent Advances. Applied Sciences (Switzerland), 2021, 11, 3512.	1.3	22
164	Enhancement of Thermostability of Aspergillus flavus Urate Oxidase by Immobilization on the Ni-Based Magnetic Metal–Organic Framework. Nanomaterials, 2021, 11, 1759.	1.9	22
165	Iron-Oxide-Supported Ultrasmall ZnO Nanoparticles: Applications for Transesterification, Amidation, and O-Acylation Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3314-3320.	3.2	21
166	Gum Kondagogu/Reduced Graphene Oxide Framed Platinum Nanoparticles and Their Catalytic Role. Molecules, 2019, 24, 3643.	1.7	21
167	Unprecedented Wiring Efficiency of Sulfonated Graphitic Carbon Nitride Materials: Toward High-Performance Amperometric Recombinant CotA Laccase Biosensors. ACS Sustainable Chemistry and Engineering, 2019, 7, 1474-1484.	3.2	21
168	Nitrogen-doped nanocarbons (NNCs): Current status and future opportunities. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 67-76.	3.2	21
169	Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 2020, 482, 110648.	1.0	21
170	Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications. Biomolecules, 2021, 11, 1714.	1.8	21
171	Gold Nanoparticle-Catalyzed Multicomponent Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 16556-16569.	3.2	21
172	Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials. Chemical Engineering Journal, 2021, 426, 131315.	6.6	20
173	Benign Synthesis of Thiazolo-androstenone Derivatives as Potent Anticancer Agents. Organic Letters, 2018, 20, 5927-5932.	2.4	19
174	Novel Pt-Ag3PO4/CdS/Chitosan Nanocomposite with Enhanced Photocatalytic and Biological Activities. Nanomaterials, 2020, 10, 2320.	1.9	19
175	Grid-Connected Photovoltaic Systems with Single-Axis Sun Tracker: Case Study for Central Vietnam. Energies, 2020, 13, 1457.	1.6	19
176	Fabrication of a Greener TiO ₂ @Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb ²⁺ lons in Plastic Toys. ACS Omega, 2020, 5, 25390-25399.	1.6	18
177	Hydrothermal self - sacrificing growth of polymorphous MnO2 on magnetic porous - carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Molecular Catalysis, 2021, 509, 111603.	1.0	18
178	Quantum dots against <scp>SARS oV</scp> â€2: diagnostic and therapeutic potentials. Journal of Chemical Technology and Biotechnology, 2022, 97, 1640-1654.	1.6	18
179	Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm, 2022, 24, 2925-2947.	1.3	18
180	Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. Chemosphere, 2022, 299, 134468.	4.2	18

#	Article	IF	CITATIONS
181	Nanosponges for Water Treatment: Progress and Challenges. Applied Sciences (Switzerland), 2022, 12, 4182.	1.3	18
182	Pd doped carbon nitride (Pd-g-C ₃ N ₄): an efficient photocatalyst for hydrogenation <i>via</i> an Al–H ₂ O system and an electrocatalyst towards overall water splitting. Green Chemistry, 2022, 24, 5535-5546.	4.6	18
183	Comprehensive study on expeditious conversion of pre-hydrolyzed alginic acid to furfural in Cu(II) biphasic systems using microwaves. Molecular Catalysis, 2018, 445, 73-79.	1.0	17
184	Sulfonated dendritic mesoporous silica nanospheres: a metal-free Lewis acid catalyst for the upgrading of carbohydrates. Green Chemistry, 2020, 22, 1754-1762.	4.6	17
185	Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their preparation, properties and applications. Green Chemistry, 2022, 24, 2722-2751.	4.6	17
186	Waste-to-wealth transition: application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chemistry, 2022, 24, 4304-4327.	4.6	17
187	Electrochemical activity of Samarium on starch-derived porous carbon: rechargeable Li- and Al-ion batteries. Nano Convergence, 2020, 7, 11.	6.3	16
188	Construction of Silver Quantum Dot Immobilized Zn-MOF-8 Composite for Electrochemical Sensing of 2,4-Dinitrotoluene. Applied Sciences (Switzerland), 2019, 9, 4952.	1.3	15
189	A single-group trial of end-stage patients with anthroponotic cutaneous leishmaniasis: Levamisole in combination with Glucantime in field and laboratory models. Microbial Pathogenesis, 2019, 128, 162-170.	1.3	15
190	Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. Journal of Drug Delivery Science and Technology, 2021, 66, 102847.	1.4	15
191	Ionic liquids-assisted greener preparation of silver nanoparticles. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100581.	3.2	15
192	Microwave-assisted sustainable co-digestion of sewage sludge and rapeseed cakes. Energy Conversion and Management, 2019, 199, 112012.	4.4	14
193	Pd Nanocatalyst Adorning Coral Reef Nanocomposite for the Synthesis of Nitriles: Utility of Cucurbita pepo Leaf Extract as a Stabilizing and Reducing Agent. Nanomaterials, 2019, 9, 565.	1.9	14
194	Framework toward More Sustainable Chemical Synthesis Design—A Case Study of Organophosphates. ACS Sustainable Chemistry and Engineering, 2019, 7, 6744-6757.	3.2	14
195	Green synthesis of novel 5-amino-bispyrazole-4-carbonitriles using a recyclable Fe ₃ O ₄ @SiO ₂ @vanillin@thioglycolic acid nano-catalyst. RSC Advances, 2021, 12, 834-844.	1.7	14
196	Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Materials Advances, 2022, 3, 4783-4796.	2.6	14
197	Mechanochemical synthesis of Cu ₂ S bonded 2D-sulfonated organic polymers: continuous production of dimethyl carbonate (DMC) <i>via</i> preheating of reactants. Green Chemistry, 2020, 22, 5619-5627.	4.6	13
198	Pomegranate Punica granatum peel waste as a naked-eye natural colorimetric sensor for the detection and determination of Fe+3 and lâ^ ions in water. Chemosphere, 2022, 294, 133759.	4.2	13

#	Article	IF	CITATIONS
199	Magnetic nanocarriers adorned on graphene: promising contrast-enhancing agents with state-of-the-art performance in magnetic resonance imaging (MRI) and theranostics. Materials Advances, 2022, 3, 2971-2989.	2.6	13
200	Oxidative C-H activation of amines using protuberant lychee-like goethite. Scientific Reports, 2018, 8, 2024.	1.6	12
201	Nonlinear molecular dynamics of quercetin in Gynocardia odorata and Diospyros malabarica fruits: Its mechanistic role in hepatoprotection. PLoS ONE, 2022, 17, e0263917.	1.1	12
202	Covalent organic frameworks and multicomponent reactions: an endearing give-and-take relationship. Organic Chemistry Frontiers, 0, , .	2.3	12
203	A catalyst-free and expeditious general synthesis of N-benzyl-N-arylcyanamides under ultrasound irradiation at room temperature. Ultrasonics Sonochemistry, 2019, 56, 481-486.	3.8	11
204	Cell cycle inhibition, apoptosis, and molecular docking studies of the novel anticancer bioactive 1,2,4-triazole derivatives. Structural Chemistry, 2020, 31, 691-699.	1.0	11
205	Toxico-pathological effects of meglumine antimoniate on human umbilical vein endothelial cells. Toxicology in Vitro, 2019, 56, 10-18.	1.1	10
206	Carbohydrate-based nanostructured catalysts: applications in organic transformations. Materials Today Chemistry, 2022, 24, 100869.	1.7	10
207	Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Veterinary Parasitology, 2021, 290, 109367.	0.7	9
208	Rendering Redox Reactions of Cathodes in Li-Ion Capacitors Enabled by Lanthanides. ACS Omega, 2020, 5, 1634-1639.	1.6	9
209	Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols. Nanomaterials, 2018, 8, 246.	1.9	8
210	Efficient Optical and UV–Vis Chemosensor Based on Chromo Probes–Polymeric Nanocomposite Hybrid for Selective Recognition of Fluoride Ions. ACS Omega, 2019, 4, 16001-16008.	1.6	8
211	Sustainable Visible Light-Driven Heck and Suzuki Reactions Using NiCu Nanoparticles Adorned on Carbon Nano-onions. ACS Sustainable Chemistry and Engineering, 2021, 9, 14061-14069.	3.2	8
212	Magnetically recoverable nanocatalyst based on N-heterocyclic ligands: efficient treatment of environmental pollutants in aqueous media. Clean Technologies and Environmental Policy, 2020, 22, 423-440.	2.1	7
213	Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations. Molecules, 2020, 25, 410.	1.7	7
214	<i>Cheilocostus speciosus</i> extract-assisted naringenin-encapsulated poly-ε-caprolactone nanoparticles: evaluation of anti-proliferative activities. Green Chemistry, 2021, 23, 7701-7711.	4.6	7
215	Protein by-products: Composition, extraction, and biomedical applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9436-9481.	5.4	7
216	Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. Clean Technologies, 2022, 4, 502-511.	1.9	7

#	Article	IF	CITATIONS
217	Photocatalytic decomposition of VOCs by AC–TiO2 and EG–TiO2 nanocomposites. Clean Technologies and Environmental Policy, 2019, 21, 1259-1268.	2.1	6
218	Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 15791-15808.	3.2	6
219	Transforming gum wastes into high tap density micron-sized carbon with ultra-stable high-rate Li storage. Electrochimica Acta, 2021, 367, 137419.	2.6	6
220	Greenness of things. Clean Technologies and Environmental Policy, 2021, 23, 2497-2498.	2.1	6
221	A Novel Strategy for Selective O-Methylation of Glycerol in Subcritical Methanol. Frontiers in Chemistry, 2019, 7, 357.	1.8	5
222	Modification of Chitosan Membranes via Methane Ion Beam. Molecules, 2020, 25, 2292.	1.7	5
223	Ultrasound-assisted fabrication of N-cyano-N-arylbenzenesulfonamides at ambient temperature: improvements with biosynthesized Ag/feldspar nanocomposite. Clean Technologies and Environmental Policy, 2020, 22, 231-246.	2.1	4
224	Cholinium-Based Ionic Liquids Attenuate the Amyloid Fibril Formation of Lysozyme: A Greener Concept of Antiamyloidogenic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 9242-9253.	3.2	4
225	Diffusivity and hydrophobic hydration of hydrocarbons in supercritical CO ₂ and aqueous brine. RSC Advances, 2020, 10, 37938-37946.	1.7	3
226	Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. Biology, 2022, 11, 862.	1.3	3
227	Selective Synthesis of Levulinic Ester from Furfural Catalyzed by Hierarchical Zeolites. Catalysts, 2022, 12, 783.	1.6	3
228	Polymer surfaces adorning ligand-coordinated palladium for hydrogenation reactions. Molecular Catalysis, 2020, 494, 111129.	1.0	2
229	ACS Sustainable Chemistry & Engineering Virtual Special Issue on N-Doped Carbon Materials: Synthesis and Sustainable Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 3975-3976.	3.2	2
230	Recent Developments in Multi-component Synthesis of Lawsone Derivatives. Current Organic Synthesis, 2023, 20, 278-307.	0.7	2
231	Exploiting Urazole's Acidity for Fabrication of Hydrogels and Ion-Exchange Materials. Gels, 2021, 7, 261.	2.1	2
232	One-pot, three-component synthesis of novel coumarinyl-pyrazolo[3,4-b]pyridine-3-carboxylate derivatives using [AcMIm]FeCl4 as recyclable catalyst. Journal of Molecular Structure, 2022, 1268, 133623.	1.8	1