
Songlin Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor Susceptibility Gene 101 (TSG101) Contributes to Virion Formation of Porcine Reproductive and Respiratory Syndrome Virus via Interaction with the Nucleocapsid (N) Protein along with the Early Secretory Pathway. Journal of Virology, 2022, 96, jvi0000522.	3.4	6
2	Development of a p72 trimer–based colloidal gold strip for detection of antibodies against African swine fever virus. Applied Microbiology and Biotechnology, 2022, 106, 2703-2714.	3.6	22
3	Proteomic Investigation Reveals Eukaryotic Translation Initiation Factor 5A Involvement in Porcine Reproductive and Respiratory Syndrome Virus Infection in vitro. Frontiers in Veterinary Science, 2022, 9, 861137.	2.2	0
4	Quantitative Proteomic Analysis of Global Protein Acetylation in PRRSVâ€Infected Pulmonary Alveolar Macrophages. Proteomics, 2021, 21, 2000019.	2.2	6
5	Porcine reproductive and respiratory syndrome virus increases SOCS3 production via activation of p38/AP-1 signaling pathway to promote viral replication. Veterinary Microbiology, 2021, 257, 109075.	1.9	5
6	Structural comparison of CD163 SRCR5 from different species sheds some light on its involvement in porcine reproductive and respiratory syndromeÂvirus-2 infection in vitro. Veterinary Research, 2021, 52, 97.	3.0	9
7	Efficacy of a live attenuated highly pathogenic PRRSV vaccine against a NADC30-like strain challenge: implications for ADE of PRRSV. BMC Veterinary Research, 2021, 17, 260.	1.9	10
8	Elastase-mediated membrane fusion of highly pathogenic porcine reproductive and respiratory syndrome virus at host cell surface. Veterinary Microbiology, 2020, 250, 108851.	1.9	1
9	Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication. Frontiers in Microbiology, 2020, 11, 581856.	3.5	8
10	Porcine Reproductive and Respiratory Syndrome Virus Utilizes Viral Apoptotic Mimicry as an Alternative Pathway To Infect Host Cells. Journal of Virology, 2020, 94, .	3.4	21
11	Porcine sialoadhesin suppresses type I interferon production to support porcine reproductive and respiratory syndrome virus infection. Veterinary Research, 2020, 51, 18.	3.0	7
12	Vesicular stomatitis virus glycoprotein suppresses nuclear factor kappa-B- and mitogen-activated protein kinase-mediated pro-inflammatory responses dependent on sialic acids. International Journal of Biological Macromolecules, 2020, 152, 828-833.	7.5	4
13	Porcine reproductive and respiratory syndrome virus up-regulates sialoadhesin via IFN-STAT signaling to facilitate its infection. Microbial Pathogenesis, 2020, 142, 104112.	2.9	4
14	Glycoprotein 5 Is Cleaved by Cathepsin E during Porcine Reproductive and Respiratory Syndrome Virus Membrane Fusion. Journal of Virology, 2020, 94, .	3.4	10
15	Porcine Reproductive and Respiratory Syndrome Virus Enhances Self-Replication via AP-1–Dependent Induction of SOCS1. Journal of Immunology, 2020, 204, 394-407.	0.8	24
16	Prevalence and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China during 2016–2017: NADC30-like PRRSVs are predominant. Microbial Pathogenesis, 2019, 135, 103657.	2.9	32
17	Porcine FcγRIIb mediated PRRSV ADE infection through inhibiting IFN-β by cytoplasmic inhibitory signal transduction. International Journal of Biological Macromolecules, 2019, 138, 198-206.	7.5	12
18	Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. MBio, 2019, 10, .	4.1	32

SONGLIN QIAO

#	Article	IF	CITATIONS
19	Identification of a novel linear B-cell epitope within the collagenase equivalent domain of porcine epidemic diarrhea virus spike glycoprotein. Virus Research, 2019, 266, 34-42.	2.2	19
20	Identification of the RNA Pseudoknot within the 3′ End of the Porcine Reproductive and Respiratory Syndrome Virus Genome as a Pathogen-Associated Molecular Pattern To Activate Antiviral Signaling via RIG-I and Toll-Like Receptor 3. Journal of Virology, 2018, 92, .	3.4	25
21	The CD163 long-range scavenger receptor cysteine-rich repeat: expression, purification and X-ray crystallographic characterization. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 322-326.	0.8	3
22	Genomic analysis of a recombinant NADC30-like porcine reproductive and respiratory syndrome virus in china. Virus Genes, 2018, 54, 86-97.	1.6	27
23	Porcine reproductive and respiratory syndrome virus induces interleukin-1β through MyD88/ERK/AP-1 and NLRP3 inflammasome in microglia. Veterinary Microbiology, 2018, 227, 82-89.	1.9	21
24	Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. International Journal of Biological Macromolecules, 2018, 117, 704-712.	7.5	9
25	The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virology Journal, 2018, 15, 2.	3.4	158
26	Molecular epidemiology of porcine reproductive and respiratory syndrome virus in Central China since 2014: The prevalence of NADC30-like PRRSVs. Microbial Pathogenesis, 2017, 109, 20-28.	2.9	22
27	Porcine 2′, 5′-oligoadenylate synthetase 2 inhibits porcine reproductive and respiratory syndrome virus replication inÂvitro. Microbial Pathogenesis, 2017, 111, 14-21.	2.9	17
28	The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus. International Journal of Biological Macromolecules, 2017, 104, 1223-1228.	7.5	20
29	The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection. Journal of Virology, 2017, 91, .	3.4	58
30	Development of an immunochromatographic strip for detection of antibodies against porcine reproductive and respiratory syndrome virus. Journal of Veterinary Science, 2017, 18, 307.	1.3	16
31	Complete Genome Sequence of a Mosaic NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus in China. Genome Announcements, 2016, 4, .	0.8	16
32	Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China. Virus Genes, 2016, 52, 91-98.	1.6	50
33	Structural prediction of porcine sialoadhesin V-set Ig-like domain sheds some light on its role in porcine reproductive and respiratory syndrome virus (PRRSV) infection. Frontiers of Agricultural Science and Engineering, 2016, 3, 65.	1.4	3
34	Cloning and Characterization of the IgA Fc Receptor from Swine. Journal of Microbiology and Biotechnology, 2016, 26, 2192-2198.	2.1	1
35	Complete Genome Sequence of the Porcine Epidemic Diarrhea Virus Variant CH/HNYF/2014. Genome Announcements, 2015, 3, .	0.8	3
36	Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China. Virus Genes, 2015, 50, 401-409.	1.6	43

Songlin Qiao

#	Article	IF	CITATIONS
37	Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography. Frontiers of Agricultural Science and Engineering, 2015, 2, 230.	1.4	5
38	Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes. Archives of Virology, 2014, 159, 1057-1065.	2.1	34
39	The Zinc-Finger Domain Was Essential for Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein-11± to Inhibit the Production of Interferon-12. Journal of Interferon and Cytokine Research, 2013, 33, 328-334.	1.2	8
40	Antibody-dependent enhancement of PRRSV infection down-modulates TNF-α and IFN-β transcription in macrophages. Veterinary Immunology and Immunopathology, 2013, 156, 128-134.	1.2	26
41	Impairment of the Antibody-Dependent Phagocytic Function of PMNs through Regulation of the Fcl̂³Rs Expression after Porcine Reproductive and Respiratory Syndrome Virus Infection. PLoS ONE, 2013, 8, e66965.	2.5	4
42	Amino acid at position 176 was essential for porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 1α (nsp1α) as an inhibitor to the induction of IFN-β. Cellular Immunology, 2012, 280, 125-131.	3.0	4
43	Cloning and characterization of ovine immunoglobulin G Fc receptor III (FcγRIII). Veterinary Immunology and Immunopathology, 2011, 139, 282-288.	1.2	1
44	Porcine FcÎ ³ RIIb Mediates Enhancement of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection. PLoS ONE, 2011, 6, e28721.	2.5	26
45	Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Veterinary Microbiology, 2011, 149, 213-220.	1.9	59
46	Development of an immunochromatographic strip for the detection of antibodies against foot-and-mouth disease virus serotype O. Journal of Virological Methods, 2010, 165, 139-144.	2.1	27
47	Development of a Peptide-Based Immunochromatographic Strip for Differentiation of Serotype O <i>Foot-and-Mouth Disease Virus</i> —Infected Pigs from Vaccinated Pigs. Journal of Veterinary Diagnostic Investigation, 2010, 22, 412-415.	1.1	13
48	Cloning and characterization of ovine immunoglobulin G Fc receptor II (FcÎ ³ RII). Veterinary Immunology and Immunopathology, 2010, 133, 243-249.	1.2	3
49	Genetic characterization and ligand specificity of the ovine Fc gamma receptor I (ovFcγRІ). Veterinary Immunology and Immunopathology, 2010, 137, 317-321.	1.2	3
50	Characterization and ligand specificity of sheep IgG2 receptor. Immunogenetics, 2009, 61, 597-601.	2.4	4
51	Expression, purification and characterization of a functional extracellular domain of porcine Fcl ³ RII. Protein Expression and Purification, 2009, 68, 12-17.	1.3	5
52	Efficient recovery of a functional extracellular domain of bovine IgG2 Fc receptor (boFcγ2R) from inclusion bodies by a rapid dilution refolding system. Journal of Immunological Methods, 2008, 334, 21-28.	1.4	6
53	Identification of the linear epitope for Fc-binding on the bovine IgG2 Fc receptor (boFcl̂³2R) using synthetic peptides. FEBS Letters, 2006, 580, 1383-1390.	2.8	8
54	Cloning and characterization of porcine Fc gamma receptor II (FcγRII). Veterinary Immunology and Immunopathology, 2006, 114, 178-184.	1.2	27

#	Article	IF	CITATIONS
55	Molecular cloning and expression of the porcine high-affinity immunoglobulin G Fc receptor (FcγRI). Immunogenetics, 2006, 58, 845-849.	2.4	19