Thierry Maris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265719/publications.pdf

Version: 2024-02-01

146	3,433	29 h-index	54
papers	citations		g-index
151	151	151	4160 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Probing the Relationship between Gelation and Crystallization by Using Salts of Lithocholic Acid. Crystal Growth and Design, 2022, 22, 643-652.	1.4	3
2	Design, structural characterization and Hirshfeld surface analysis of Ni(II) and Zn(II) coordination polymers using mixed linker synthetic strategy based on tetratopic and macrocyclic N-donor ligands. Journal of Molecular Structure, 2022, 1254, 132317.	1.8	2
3	The Role of Hydrogen Bonds in Interactions between [PdCl4]2â^' Dianions in Crystal. Molecules, 2022, 27, 2144.	1.7	4
4	Designing Tetraoxa[8]circulenes To Serve as Hosts and Sensors. Journal of the American Chemical Society, 2022, 144, 556-572.	6.6	12
5	Surprising Chemistry of 6-Azidotetrazolo[5,1- <i>a</i>]phthalazine: What a Purported Natural Product Reveals about the Polymorphism of Explosives. Journal of Organic Chemistry, 2022, 87, 6680-6694.	1.7	5
6	Diphenoquinones Redux. Journal of Organic Chemistry, 2022, 87, 7673-7695.	1.7	1
7	Synthesis, characterization and Hirshfeld surface analysis of a mixed-ligand copper (II) coordination polymer from 1,4,8,11-tetraazacyclotetradecane and pyromellitic dianhydride. Transition Metal Chemistry, 2021, 46, 283-290.	0.7	3
8	Flexible and porous 2D layered structures based on mixed-linker metal–organic frameworks for gas sorption studies. Dalton Transactions, 2021, 50, 8727-8735.	1.6	8
9	Structural characterization, dielectric properties, optical and theoretical DFT study of (C8H14N2)(BF4)2·H2O compound. Journal of the Iranian Chemical Society, 2021, 18, 2065.	1.2	1
10	Experimental and theoretical evidence of attractive interactions between dianions: [PdCl ₄] ^{2â^'} 2â^'2â^'3<[PdCl ₄] ^{2â^'} . Chemical Communications, 2021, 57, 13305-13308.	2.2	7
11	Hydrogen Bond Patterns of Dipyridone and Bis(Hydroxypyridinium) Cations. ACS Omega, 2021, 6, 35649-35656.	1.6	2
12	Building coordination polymers using dipyridone ligands. CrystEngComm, 2020, 22, 441-447.	1.3	6
13	Bis(phosphangulene)iminium Salts. Holding on to Fullerenes with Phangs. Crystal Growth and Design, 2020, 20, 1319-1327.	1.4	4
14	Design of a [FeFe] macrocyclic metallotecton for light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 2699-2708.	3.8	10
15	Phosphangulene: A Molecule for All Chemists. Accounts of Chemical Research, 2020, 53, 2472-2482.	7.6	9
16	A Rational Design of Microporous Nitrogen-Rich Lanthanide Metal–Organic Frameworks for CO ₂ /CH ₄ Separation. ACS Applied Materials & Interfaces, 2020, 12, 50619-50627.	4.0	25
17	Amidine/Amidinate Cobalt Complexes: One-Pot Synthesis, Mechanism, and Photocatalytic Application for Hydrogen Production. Inorganic Chemistry, 2020, 59, 14910-14919.	1.9	8
18	Low-bandgap push–pull molecules in polymer matrices for use in thin-film organic photovoltaic devices. Canadian Journal of Chemistry, 2020, 98, 564-574.	0.6	1

#	Article	IF	Citations
19	ROY Reclaims Its Crown: New Ways To Increase Polymorphic Diversity. Journal of the American Chemical Society, 2020, 142, 11873-11883.	6.6	83
20	Glass engineering of aminotriazine-based materials with sub-ambient <i>T</i> _g and high kinetic stability. CrystEngComm, 2020, 22, 4275-4288.	1.3	3
21	Controlling Molecular Organization by Using Phenyl Embraces of Multiple Trityl Groups. Journal of Organic Chemistry, 2020, 85, 4026-4035.	1.7	6
22	Modular Construction of Porous Hydrogenâ€Bonded Molecular Materials from Melams. Chemistry - A European Journal, 2020, 26, 7026-7040.	1.7	14
23	Synthesis, crystal structure, characterization of pyrazine diaminotriazine based complexes and their systematic comparative study with pyridyl diaminotriazine based complexes for light-driven hydrogen production. Polyhedron, 2020, 180, 114412.	1.0	8
24	Intercalated 2D+2D hydrogen-bonded sheets in co-crystals of cobalt salt with 1 <i>H</i> ,1′ <i>H</i> -[3,3′]bipyridinyl-6,6′-dione. Canadian Journal of Chemistry, 2020, 98, 347-351.	0.6	2
25	<i>fac</i> -Triaqua(1,10-phenanthroline-l̂° ² <i>N</i> , <i>N</i> , <i>N</i> ,€²)(sulfato-l̂° <i>O</i>)cobalt(II): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 835-840.	0.2	0
26	Putting Fullerenes in Their Place: Cocrystallizing C ₆₀ and C ₇₀ with Phosphangulene Chalcogenides. Crystal Growth and Design, 2019, 19, 5418-5428.	1.4	9
27	Building Large Structures with Curved Aromatic Surfaces by Complexing Metals with Phosphangulene. Journal of the American Chemical Society, 2019, 141, 18740-18753.	6.6	11
28	Foiling Normal Patterns of Crystallization by Design. Polymorphism of Phosphangulene Chalcogenides. Crystal Growth and Design, 2019, 19, 5390-5406.	1.4	13
29	Mimicking 2,2′:6′,2′′:6′′,2′′′-quaterpyridine complexes for the light-driven hydrogen evo synthesis, structural, thermal and physicochemical characterizations. RSC Advances, 2019, 9, 28153-28164.		action: 10
30	Programmed Molecular Construction: Driving the Self-Assembly by Coordination and Hydrogen Bonds Using 6-(Pyridin-2-yl)-1,3,5-triazine-2,4-diamine with M(NO3)2 Salts. ACS Omega, 2019, 4, 2708-2718.	1.6	9
31	Syntheses of mono and bimetallic cyamelurate polymers with reversible chromic behaviour. Dalton Transactions, 2019, 48, 7006-7014.	1.6	15
32	Molecular Organization in Crystals of Bis(diaminotriazinyl)-Substituted Derivatives of Benzene, Pyridine, and Pyrazine. Crystal Growth and Design, 2019, 19, 1299-1307.	1.4	8
33	Crystal structure of diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 589-592.	0.2	3
34	Unconventional field induced phases in a quantum magnet formed by free radical tetramers. Physical Review B, 2018, 97, .	1.1	5
35	Triptycene 1,2-Quinones and Quinols: Permeable Crystalline Redox-Active Molecular Solids. Journal of Organic Chemistry, 2018, 83, 15426-15437.	1.7	15
36	The first Fe(II) complex bearing end-to-end dicyanamide as a double bridging ligand: Crystallography study and Hirshfeld surface analysis; completed with a CSD survey. Journal of Molecular Structure, 2018, 1173, 697-706.	1.8	7

#	Article	IF	CITATIONS
37	Crystal structure of octane-1,8-diaminium 4,4′-(diazene-1,2-diyl)dibenzoate monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 724-727.	0.2	O
38	Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 458-460.	0.2	1
39	Crystal structures of the solvent-free and ethanol disolvate forms of 4,4′-(diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid) exemplifying self-stabilized azobenzene <i>cis</i> -configurations. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1486-1490.	0.2	0
40	Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State. Journal of Organic Chemistry, 2017, 82, 5034-5045.	1.7	46
41	Glass versus Crystal: A Balancing Act between Competing Intermolecular Interactions. Crystal Growth and Design, 2017, 17, 2365-2373.	1.4	11
42	Synthesis of Salts of 1,2,5,6- and 1,4,5,8-Naphthalenetetramine. ACS Omega, 2017, 2, 6023-6030.	1.6	2
43	Comparing Crystallizations in Three Dimensions and Two Dimensions: Behavior of Isomers of $[2,2\hat{a}\in^2$ -Bipyridine]dicarbonitrile and $[1,10$ -Phenanthroline]dicarbonitrile. Crystal Growth and Design, 2017, 17, 5242-5248.	1.4	7
44	Predictably Ordered Open Hydrogen-Bonded Networks Built from Indeno[1,2- <i>b</i> jluorenes. Journal of Organic Chemistry, 2017, 82, 8536-8547.	1.7	15
45	Synthesis and characterization of 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1044-1047.	0.2	0
46	Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2016, 55, 894-898.	7.2	30
47	Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie, 2016, 128, 906-910.	1.6	15
48	Frontispiece: Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2016, 55, .	7.2	0
49	Crystal structure of bis(1,4-diazabicyclo[2.2.2]octan-1-ium) thiosulfate dihydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 273-275.	0.2	1
50	Crystal structure of bis(N,N,N′,N′-tetramethylguanidinium) tetrachloridocuprate(II). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1047-1049.	0.2	2
51	Frontispiz: Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie, 2016, 128, .	1.6	0
52	Engineering Hydrogen-Bonded Hexagonal Networks Built from Flexible 1,3,5-Trisubstituted Derivatives of Benzene. Journal of Organic Chemistry, 2016, 81, 3076-3086.	1.7	15
53	Crystal structure ofcatena-poly[N,N,N′,N′-tetramethylguanidinium [(chloridocadmate)-di-μ-chlorido]]. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1-3.	0.2	3
54	Crystal structure of bis(2-methyl-1 <i>H</i> -imidazol-3-ium) dihydroxidobis(oxalato-lº ² <i>O</i> ¹ , <i>O</i> ²)stannate(IV) monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 355-357.	0.2	4

#	Article	IF	CITATIONS
55	Crystal structures of the two salts 2-methyl-1 <i>H</i> i>imidazol-3-ium nitrateâ€"2-methyl-1 <i>H</i> i>imidazole (1/1) and 2-methyl-1 <i>H</i> i>imidazol-3-ium nitrate. Acta Crystallographic Communications, 2016, 72, 482-485.	0.2	2
56	Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt. Physical Review B, 2015, 92, .	1.1	26
57	Crystal structure of (ferrocenylmethyl)dimethylammonium hydrogen oxalate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 947-949.	0.2	1
58	Crystal structure of bis(2-methyl-1H-imidazol-3-ium) tetrachloridocobaltate(II). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1064-1066.	0.2	4
59	Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′)stannate(IV). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 520-522.	0.2	4
60	Structure and magnetic properties of binuclear [Cu(amppz)(\hat{l} 4-NC)Fe(CN)4NO] (amppz =) Tj ETQq0 0 0 rgBT/0	Overlock 1	0 тұ 50 542 т
61	Molecular Networks Created by Charge-Assisted Hydrogen Bonding in Phosphonate, Phosphate, and Sulfonate Salts of Bis(amidines). Crystal Growth and Design, 2014, 14, 3658-3666.	1.4	17
62	Constructing monocrystalline covalent organic networks by polymerization. Nature Chemistry, 2013, 5, 830-834.	6.6	351
63	Molecular Networks Created by Charge-Assisted Hydrogen Bonding in Carboxylate Salts of a Bis(amidine). Crystal Growth and Design, 2013, 13, 1872-1877.	1.4	19
64	N,N,N-Tributylbutan-1-aminium (T-4)-(cyano-ΰC)trihydroborate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1713-o1713.	0.2	0
65	Dicyclohexylammonium hydrogen phenylphosphonate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1432-o1432.	0.2	4
66	Bis(2,2′-bipyrimidine-κ2N1,N1′)palladium(II) bis(tetrafluoroborate) acetonitrile monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1347-m1348.	0.2	0
67	Coordination of a Di- <i>tert</i> -butylphosphidoboratabenzene Ligand to Electronically Unsaturated Group 10 Transition Metals. Organometallics, 2012, 31, 6428-6437.	1.1	24
68	On the Interaction of Acetone with Electrophilic Metallocavitands Having Extended Cavities. Inorganic Chemistry, 2012, 51, 10384-10393.	1.9	8
69	Using Systematic Comparisons of 2D and 3D Structures To Reveal Principles of Molecular Organization. Tetraesters of Linear Bisisophthalic Acids. Journal of Physical Chemistry C, 2012, 116, 13052-13062.	1.5	13
70	Structural Similarity of Hydrogen-Bonded Networks in Crystals of Isomeric Pyridyl-Substituted Diaminotriazines. Crystal Growth and Design, 2011, 11, 287-294.	1.4	17
71	Engineering homologous molecular organization in 2D and 3D. Cocrystallization of aminoazines and alkanecarboxylic acids. CrystEngComm, 2011, 13, 5571.	1.3	9
72	Surrogates of 2,2′-Bipyridine Designed to Chelate Ag(I) and Create Metallotectons for Engineering Hydrogen-Bonded Crystals. Crystal Growth and Design, 2011, 11, 2026-2034.	1.4	23

#	Article	IF	CITATIONS
73	Photophysical, Electrochemical and Crystallographic Investigations of the Fluorophore 2,5-Bis(5- <i>tert</i> -butyl-benzoxazol-2-yl)thiophene. Journal of Physical Chemistry B, 2011, 115, 12362-12369.	1.2	30
74	Using Pyridinyl-Substituted Diaminotriazines to Bind Pd(II) and Create Metallotectons for Engineering Hydrogen-Bonded Crystals. Inorganic Chemistry, 2011, 50, 5605-5618.	1.9	37
75	Syntheses and Structures of Isomeric Diaminotriazinyl-Substituted 2,2′-Bipyridines and 1,10-Phenanthrolines. Journal of Organic Chemistry, 2011, 76, 1333-1341.	1.7	17
76	Engineering Homologous Molecular Organization in 2D and 3D. Cocrystallization of Pyridyl-Substituted Diaminotriazines with Alkanecarboxylic Acids. Journal of Physical Chemistry C, 2011, 115, 12908-12919.	1.5	15
77	Synthesis, crystal structures and thermal analysis of two new coordination polymers. Comptes Rendus Chimie, 2011, 14, 991-996.	0.2	2
78	<i>trans</i> -Dichloridobis[(pyridin-4-yl)boronic acid-îº <i>N</i>]palladium(II) dimethyl sulfoxide disolvate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m518-m518.	0.2	1
79	Molecular Tectonics. Use of Br••af€aryl Supramolecular Interactions for the construction of Organized Networks from 9,9'-spirobifluorene in the Crystalline State. CheM, 2011, 1, 52-61.	0.2	4
80	Four New Ag(I) Coordination Polymers: Synthesis, Crystal Structures and Thermal Stability. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 816-824.	1.9	10
81	Influence of the counteranion on silver(I)–dithioether coordination polymers. Polyhedron, 2010, 29, 2966-2975.	1.0	8
82	(<i>E</i>)-4,4′-Bis(1,3-benzoxazol-2-yl)stilbene at 150 and 375â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o11-o14.	0.4	6
83	Triarylamines Designed to Form Molecular Glasses. Derivatives of Tris(p-terphenyl-4-yl)amine with Multiple Contiguous Phenyl Substituents. Organic Letters, 2010, 12, 404-407.	2.4	20
84	Structural Features in Crystals of Derivatives of Benzene with Multiple Contiguous Phenyl Substituents. Crystal Growth and Design, 2010, 10, 648-657.	1.4	46
85	Crystal-State Structure Analysis of β-Hydroxy-γ-lactam Constrained Ser/Thr Peptidomimetics. Heterocycles, 2010, 82, 729.	0.4	7
86	Engineering New Metal-Organic Frameworks Built from Flexible Tetrapyridines Coordinated to Cu(II) and Cu(I). Inorganic Chemistry, 2009, 48, 2793-2807.	1.9	45
87	Crystal Structures of Spiroborates Derived from 2,2′-Dihydroxybiphenyl. Crystal Growth and Design, 2008, 8, 308-318.	1.4	15
88	Crystal Structures of Spiroborates Derived from [1,1′-Binaphthalene]-2,2′-diol (BINOL). Crystal Growth and Design, 2008, 8, 1541-1546.	1.4	16
89	Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6′,6′′-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines. Crystal Growth and Design, 2008, 8, 1547-1553.	. 1.4	25
90	Self-Assembly of Noncyclic Bis- <scp>d</scp> - and <scp>l</scp> -tripeptides into Higher Order Tubular Constructs:  Design, Synthesis, and X-ray Crystal Superstructure. Journal of Organic Chemistry, 2008, 73, 1181-1191.	1.7	11

#	Article	IF	CITATIONS
91	Synthesis and Structure of Spirocyclic Tetraethers Derived from [1,1′-Binaphthalene]-2,2′-diol and Pentaerythritol. Journal of Organic Chemistry, 2008, 73, 5255-5263.	1.7	10
92	Pentane-1,5-diammonium tetrachloridopalladate(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m208-m208.	0.2	3
93	Ensuring Homology between 2D and 3D Molecular Crystals. Langmuir, 2007, 23, 11980-11985.	1.6	19
94	Engineering Hydrogen-Bonded Molecular Crystals Built from Derivatives of Hexaphenylbenzene and Related Compounds. Journal of the American Chemical Society, 2007, 129, 4306-4322.	6.6	195
95	The potential of intermolecular Nâ <o 2007,="" 63,="" 6603-6613.<="" as="" by="" crystal="" engineering,="" groups="" hexakis(4-nitrophenyl)benzene.="" in="" interactions="" nitro="" of="" revealed="" structures="" td="" tetrahedron,=""><td>1.0</td><td>36</td></o>	1.0	36
96	A new pseudopolymorph of hexakis(4-cyanophenyl)benzene. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o4-o6.	0.4	2
97	The Dark Side of Crystal Engineering:Â Creating Glasses from Small Symmetric Molecules that Form Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 10372-10373.	6.6	63
98	A New Class of Selective Low-Molecular-Weight Gelators Based on Salts of Diaminotriazinecarboxylic Acids. Chemistry of Materials, 2006, 18, 3616-3626.	3.2	78
99	Two-dimensional hydrogen-bonded networks in crystals of diboronic acids. CrystEngComm, 2006, , .	1.3	9
100	Inclusion Compounds of Hexakis(4-cyanophenyl)benzene:  Open Networks Maintained by Câ^'H···N Interactions. Crystal Growth and Design, 2006, 6, 461-466.	1.4	25
101	Weak Interactions in the Crystal Structures of Tetraacetylenes Derived from Pentaerythrityl Tetraphenyl Ether. Crystal Growth and Design, 2006, 6, 1335-1340.	1.4	8
102	Hydrogen-bonded networks in crystals built from bis(biguanides) and their salts. Canadian Journal of Chemistry, 2006, 84, 1426-1433.	0.6	11
103	Engineering crystals built from molecules containing boron. Pure and Applied Chemistry, 2006, 78, 1305-1321.	0.9	32
104	Molecular Tectonics: Porous Cleavable Networks Constructed by Dipole-Directed Stacking of Hydrogen-Bonded Sheets. Angewandte Chemie - International Edition, 2005, 44, 4021-4025.	7.2	75
105	Tetrakis(4-carboxyphenyl)methane–dimethyl sulfoxide–toluene (1/4/1). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o518-o520.	0.2	9
106	Pentaerythrityl tetrakis (4-bromobenzyl ether). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o601-o603.	0.2	0
107	Tetrakis(3,5-dimethoxyphenyl)silane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2563-o2566.	0.2	1
108	Tetrakis(2-methoxy-5-pyridyl)silane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o4136-o4138.	0.2	3

#	Article	IF	CITATIONS
109	A practical guide to arylbiguanides $\hat{A}-$ Synthesis and structural characterization. Canadian Journal of Chemistry, 2005, 83, 615-625.	0.6	35
110	Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetra- and Hexaanilines. Crystal Growth and Design, 2005, 5, 1451-1456.	1.4	27
111	Molecular networks built from weakly interacting nitro-substituted pentaerythrityl tetraaryl ethers. CrystEngComm, 2005, 7, 158-160.	1.3	11
112	Weakly Bonded Molecular Networks Built from Tetranitro- and Tetracyanospirobifluorenes. Crystal Growth and Design, 2005, 5, 1237-1245.	1.4	22
113	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 2,2â€~,7,7â€~-Tetraphenyl-9,9â€~-spirobi[9H-fluorene]. Crystal Growth and Design, 2005, 5, 1227-1235.	1.4	41
114	Molecular Tectonics. Selective Exchange of Cations in Porous Anionic Hydrogen-Bonded Networks Built from Derivatives of Tetraphenylborate. Journal of the American Chemical Society, 2005, 127, 5910-5916.	6.6	120
115	Submaximal Interpenetration and Bicontinuous Three-Dimensional Channels in Porous Molecular Networks. Journal of the American Chemical Society, 2005, 127, 10008-10009.	6.6	41
116	1,4-Phenylenediboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o1316-o1318.	0.2	23
117	Molecular Tectonics. Disruption of Self-Association in Melts Derived from Hydrogen-Bonded Solids. Macromolecules, 2004, 37, 7351-7357.	2.2	27
118	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 9,9â€~-Spirobifluorene. Journal of Organic Chemistry, 2004, 69, 1762-1775.	1.7	117
119	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of Pentaerythrityl Tetraphenyl Ether. Journal of Organic Chemistry, 2004, 69, 1776-1787.	1.7	87
120	Molecular tectonics \hat{A} — Use of urethanes and ureas derived from tetraphenylmethane and tetraphenylsilane to build porous chiral hydrogen-bonded networks. Canadian Journal of Chemistry, 2004, 82, 386-398.	0.6	55
121	Substantial Increase of the Ordering Temperature for {MnII/MoIII(CN)7}-Based Magnets as a Function of the 3d Ion Site Geometry:Â Example of Two Supramolecular Materials withTc= 75 and 106 K. Inorganic Chemistry, 2003, 42, 1625-1631.	1.9	99
122	Designing Permeable Molecular Crystals That React with External Agents To Give Crystalline Products. Angewandte Chemie - International Edition, 2003, 42, 5303-5306.	7.2	64
123	Cover Picture: Designing Permeable Molecular Crystals That React with External Agents To Give Crystalline Products (Angew. Chem. Int. Ed. 43/2003). Angewandte Chemie - International Edition, 2003, 42, 5253-5253.	7.2	0
124	1,3-Diphenoxy-2,2-bis(phenoxymethyl)propane. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o799-o801.	0.2	1
125	catena-Poly[benzylmethylammonium [[diaquadichloromanganate(II)]-μ-chloro]]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m1201-m1203.	0.2	1
126	Molecular Tectonics. Construction of Porous Hydrogen-Bonded Networks from Bisketals of Pentaerythritol. Journal of Organic Chemistry, 2003, 68, 240-246.	1.7	65

#	Article	IF	Citations
127	Molecular Tectonics. Dendritic Construction of Porous Hydrogen-Bonded Networks. Organic Letters, 2003, 5, 4787-4790.	2.4	30
128	Molecular Tectonics. Use of the Hydrogen Bonding of Boronic Acids To Direct Supramolecular Construction. Journal of the American Chemical Society, 2003, 125, 1002-1006.	6.6	248
129	Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetraphenols Derived from Tetraphenylmethane and Tetraphenylsilane. Crystal Growth and Design, 2003, 3, 535-540.	1.4	51
130	Deformation of Porous Molecular Networks Induced by the Exchange of Guests in Single Crystals. Journal of the American Chemical Society, 2003, 125, 14956-14957.	6.6	74
131	Excavations in molecular crystalsElectronic supplementary information (ESI) available: experimental details for syntheses and crystallographic analyses. See http://www.rsc.org/suppdata/cc/b3/b308355a/. Chemical Communications, 2003, , 2966.	2.2	21
132	Investigations of the Phase Transitions in Thiourea Inclusion Compounds with Cycloheptane, Cyclooctane, and Cyclooctanone. Chemistry of Materials, 2001, 13, 2483-2492.	3.2	23
133	Bond-valence approach to the copperî—,copper and copperî—,nitrogen bonding in binuclear copper(II) complexes: Structure of tetrakis(2-iodobenzoato)bis(caffeine)dicopper(II) at 210 K. Journal of Organometallic Chemistry, 2001, 622, 166-171.	0.8	19
134	Bond-valence approach to the copper-copper and copper-oxygen bonding in binuclear copper(II) complexes: Structure of tetrakis(2-fluoro-benzoato-O,OÂ)-bis(2-fluorobenzoate-O) dicopper(II). Zeitschrift Fur Kristallographie - Crystalline Materials, 2000, 215, 56-60.	0.4	13
135	%Variable-Temperature Studies of Order/Disorder Transitions in the Thiourea Pyridinium Halide Crystals by XRD and Solid-State2H NMR. Chemistry of Materials, 2000, 12, 3561-3569.	3.2	32
136	1,4-Butanediammonium Tetrabromopalladate(II). Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 1253-1255.	0.4	3
137	Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO4â^3. Journal of Physical Chemistry B, 1998, 102, 7183-7189.	1.2	77
138	Phase transitions in a two-dimensional molecular complex NH ₃ -(CH ₂) ₄ -NH ₃ CuCl ₄ . Phase Transitions, 1998, 66, 81-98.	0.6	5
139	X-band electron paramagnetic resonance of a quasi-bidimensional molecular composite [NH3î—,(CH2)4î—,NH3]CuCl4. Solid State Communications, 1996, 97, 669-674.	0.9	5
140	Structures and thermal behavior in the series of two-dimensional molecular composites NH3 $$ -,(CH2)4 $$ -,NH3 MCl4 related to the nature of the metal M. Part 1: Crystal structures and phase transitions in the case M = Cu and Pd. Journal of Physics and Chemistry of Solids, 1996, 57, 1963-1975.	1.9	24
141	Structural and magnetic phase transitions in bis-(alkyl ammonium) manganese tetrachlorides (CnH2n+1NH3)2MnCl4 withIn = 5, 7, and 9. Physica Status Solidi A, 1995, 149, 697-710.	1.7	18
142	Electron paramagnetic resonance and spin-lattice relaxation in two-dimensional systems. Applied Magnetic Resonance, 1995, 8, 319-333.	0.6	3
143	Spectroscopic and Crystallographic Study of Phase Transitions in Zn Bidimensional Complexes. Molecular Crystals and Liquid Crystals, 1995, 269, 55-73.	0.3	3
144	Crystal structure and phase transition in the perovskite-type layer molecular composite NH3(CH2)4NH3PbCl4. Physica Status Solidi A, 1994, 143, 203-214.	1.7	24

#	Article	IF	CITATIONS
145	Probing the Relationship between Crystallization and Gelation by Using Ammonium Salts of Bile Acids. Crystal Growth and Design, 0, , .	1.4	1
146	An Insight into Sensitive Detection of Metal ions Using a Novel Cobalt MOF: Single Crystal, Photoluminescence, and Theoretical Studies. CrystEngComm, 0, , .	1.3	0