Thierry Maris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing monocrystalline covalent organic networks by polymerization. Nature Chemistry, 2013, 5, 830-834.	13.6	351
2	Molecular Tectonics. Use of the Hydrogen Bonding of Boronic Acids To Direct Supramolecular Construction. Journal of the American Chemical Society, 2003, 125, 1002-1006.	13.7	248
3	Engineering Hydrogen-Bonded Molecular Crystals Built from Derivatives of Hexaphenylbenzene and Related Compounds. Journal of the American Chemical Society, 2007, 129, 4306-4322.	13.7	195
4	Molecular Tectonics. Selective Exchange of Cations in Porous Anionic Hydrogen-Bonded Networks Built from Derivatives of Tetraphenylborate. Journal of the American Chemical Society, 2005, 127, 5910-5916.	13.7	120
5	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 9,9â€~-Spirobifluorene. Journal of Organic Chemistry, 2004, 69, 1762-1775.	3.2	117
6	Substantial Increase of the Ordering Temperature for {MnII/MoIII(CN)7}-Based Magnets as a Function of the 3d Ion Site Geometry:Â Example of Two Supramolecular Materials withTc= 75 and 106 K. Inorganic Chemistry, 2003, 42, 1625-1631.	4.0	99
7	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of Pentaerythrityl Tetraphenyl Ether. Journal of Organic Chemistry, 2004, 69, 1776-1787.	3.2	87
8	ROY Reclaims Its Crown: New Ways To Increase Polymorphic Diversity. Journal of the American Chemical Society, 2020, 142, 11873-11883.	13.7	83
9	A New Class of Selective Low-Molecular-Weight Gelators Based on Salts of Diaminotriazinecarboxylic Acids. Chemistry of Materials, 2006, 18, 3616-3626.	6.7	78
10	Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO4â^'5. Journal of Physical Chemistry B, 1998, 102, 7183-7189.	2.6	77
11	Molecular Tectonics: Porous Cleavable Networks Constructed by Dipole-Directed Stacking of Hydrogen-Bonded Sheets. Angewandte Chemie - International Edition, 2005, 44, 4021-4025.	13.8	75
12	Deformation of Porous Molecular Networks Induced by the Exchange of Guests in Single Crystals. Journal of the American Chemical Society, 2003, 125, 14956-14957.	13.7	74
13	Molecular Tectonics. Construction of Porous Hydrogen-Bonded Networks from Bisketals of Pentaerythritol. Journal of Organic Chemistry, 2003, 68, 240-246.	3.2	65
14	Designing Permeable Molecular Crystals That React with External Agents To Give Crystalline Products. Angewandte Chemie - International Edition, 2003, 42, 5303-5306.	13.8	64
15	The Dark Side of Crystal Engineering:Â Creating Glasses from Small Symmetric Molecules that Form Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 10372-10373.	13.7	63
16	Molecular tectonics — Use of urethanes and ureas derived from tetraphenylmethane and tetraphenylsilane to build porous chiral hydrogen-bonded networks. Canadian Journal of Chemistry, 2004, 82, 386-398.	1.1	55
17	Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetraphenols Derived from Tetraphenylmethane and Tetraphenylsilane. Crystal Growth and Design, 2003, 3, 535-540.	3.0	51
18	Structural Features in Crystals of Derivatives of Benzene with Multiple Contiguous Phenyl Substituents. Crystal Growth and Design, 2010, 10, 648-657.	3.0	46

#	Article	IF	CITATIONS
19	Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State. Journal of Organic Chemistry, 2017, 82, 5034-5045.	3.2	46
20	Engineering New Metal-Organic Frameworks Built from Flexible Tetrapyridines Coordinated to Cu(II) and Cu(I). Inorganic Chemistry, 2009, 48, 2793-2807.	4.0	45
21	Molecular Tectonics. Porous Hydrogen-Bonded Networks Built from Derivatives of 2,2â€~,7,7â€~-Tetraphenyl-9,9â€~-spirobi[9H-fluorene]. Crystal Growth and Design, 2005, 5, 1227-1235.	3.0	41
22	Submaximal Interpenetration and Bicontinuous Three-Dimensional Channels in Porous Molecular Networks. Journal of the American Chemical Society, 2005, 127, 10008-10009.	13.7	41
23	Using Pyridinyl-Substituted Diaminotriazines to Bind Pd(II) and Create Metallotectons for Engineering Hydrogen-Bonded Crystals. Inorganic Chemistry, 2011, 50, 5605-5618.	4.0	37
24	The potential of intermolecular Nâ< ⁻ O interactions of nitro groups in crystal engineering, as revealed by structures of hexakis(4-nitrophenyl)benzene. Tetrahedron, 2007, 63, 6603-6613.	1.9	36
25	A practical guide to arylbiguanides — Synthesis and structural characterization. Canadian Journal of Chemistry, 2005, 83, 615-625.	1.1	35
26	%Variable-Temperature Studies of Order/Disorder Transitions in the Thiourea Pyridinium Halide Crystals by XRD and Solid-State2H NMR. Chemistry of Materials, 2000, 12, 3561-3569.	6.7	32
27	Engineering crystals built from molecules containing boron. Pure and Applied Chemistry, 2006, 78, 1305-1321.	1.9	32
28	Molecular Tectonics. Dendritic Construction of Porous Hydrogen-Bonded Networks. Organic Letters, 2003, 5, 4787-4790.	4.6	30
29	Photophysical, Electrochemical and Crystallographic Investigations of the Fluorophore 2,5-Bis(5- <i>tert</i> -butyl-benzoxazol-2-yl)thiophene. Journal of Physical Chemistry B, 2011, 115, 12362-12369.	2.6	30
30	Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2016, 55, 894-898.	13.8	30
31	Molecular Tectonics. Disruption of Self-Association in Melts Derived from Hydrogen-Bonded Solids. Macromolecules, 2004, 37, 7351-7357.	4.8	27
32	Molecular Tectonics. Hydrogen-Bonded Networks Built from Tetra- and Hexaanilines. Crystal Growth and Design, 2005, 5, 1451-1456.	3.0	27
33	Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt. Physical Review B, 2015, 92, .	3.2	26
34	Inclusion Compounds of Hexakis(4-cyanophenyl)benzene:  Open Networks Maintained by Câ^'H··•N Interactions. Crystal Growth and Design, 2006, 6, 461-466.	3.0	25
35	Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6′,6′′-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines. Crystal Growth and Design, 2008, 8, 1547-1553	.3.0	25
36	A Rational Design of Microporous Nitrogen-Rich Lanthanide Metal–Organic Frameworks for CO ₂ /CH ₄ Separation. ACS Applied Materials & Interfaces, 2020, 12, 50619-50627.	8.0	25

#	Article	IF	CITATIONS
37	Crystal structure and phase transition in the perovskite-type layer molecular composite NH3(CH2)4NH3PbCl4. Physica Status Solidi A, 1994, 143, 203-214.	1.7	24
38	Structures and thermal behavior in the series of two-dimensional molecular composites NH3î—,(CH2)4î—,NH3 MCl4 related to the nature of the metal M. Part 1: Crystal structures and phase transitions in the case M = Cu and Pd. Journal of Physics and Chemistry of Solids, 1996, 57, 1963-1975.	4.0	24
39	Coordination of a Di- <i>tert</i> -butylphosphidoboratabenzene Ligand to Electronically Unsaturated Group 10 Transition Metals. Organometallics, 2012, 31, 6428-6437.	2.3	24
40	Investigations of the Phase Transitions in Thiourea Inclusion Compounds with Cycloheptane, Cyclooctane, and Cyclooctanone. Chemistry of Materials, 2001, 13, 2483-2492.	6.7	23
41	1,4-Phenylenediboronic acid. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o1316-o1318.	0.2	23
42	Surrogates of 2,2′-Bipyridine Designed to Chelate Ag(I) and Create Metallotectons for Engineering Hydrogen-Bonded Crystals. Crystal Growth and Design, 2011, 11, 2026-2034.	3.0	23
43	Weakly Bonded Molecular Networks Built from Tetranitro- and Tetracyanospirobifluorenes. Crystal Growth and Design, 2005, 5, 1237-1245.	3.0	22
44	Excavations in molecular crystalsElectronic supplementary information (ESI) available: experimental details for syntheses and crystallographic analyses. See http://www.rsc.org/suppdata/cc/b3/b308355a/. Chemical Communications, 2003, , 2966.	4.1	21
45	Triarylamines Designed to Form Molecular Glasses. Derivatives of Tris(p-terphenyl-4-yl)amine with Multiple Contiguous Phenyl Substituents. Organic Letters, 2010, 12, 404-407.	4.6	20
46	Bond-valence approach to the copperî—,copper and copperî—,nitrogen bonding in binuclear copper(II) complexes: Structure of tetrakis(2-iodobenzoato)bis(caffeine)dicopper(II) at 210 K. Journal of Organometallic Chemistry, 2001, 622, 166-171.	1.8	19
47	Ensuring Homology between 2D and 3D Molecular Crystals. Langmuir, 2007, 23, 11980-11985.	3.5	19
48	Molecular Networks Created by Charge-Assisted Hydrogen Bonding in Carboxylate Salts of a Bis(amidine). Crystal Growth and Design, 2013, 13, 1872-1877.	3.0	19
49	Structural and magnetic phase transitions in bis-(alkyl ammonium) manganese tetrachlorides (CnH2n+1NH3)2MnCl4 withIn = 5, 7, and 9. Physica Status Solidi A, 1995, 149, 697-710.	1.7	18
50	Structural Similarity of Hydrogen-Bonded Networks in Crystals of Isomeric Pyridyl-Substituted Diaminotriazines. Crystal Growth and Design, 2011, 11, 287-294.	3.0	17
51	Syntheses and Structures of Isomeric Diaminotriazinyl-Substituted 2,2′-Bipyridines and 1,10-Phenanthrolines. Journal of Organic Chemistry, 2011, 76, 1333-1341.	3.2	17
52	Molecular Networks Created by Charge-Assisted Hydrogen Bonding in Phosphonate, Phosphate, and Sulfonate Salts of Bis(amidines). Crystal Growth and Design, 2014, 14, 3658-3666.	3.0	17
53	Crystal Structures of Spiroborates Derived from [1,1′-Binaphthalene]-2,2′-diol (BINOL). Crystal Growth and Design, 2008, 8, 1541-1546.	3.0	16
54	Crystal Structures of Spiroborates Derived from 2,2′-Dihydroxybiphenyl. Crystal Growth and Design, 2008, 8, 308-318.	3.0	15

#	Article	IF	CITATIONS
55	Engineering Homologous Molecular Organization in 2D and 3D. Cocrystallization of Pyridyl-Substituted Diaminotriazines with Alkanecarboxylic Acids. Journal of Physical Chemistry C, 2011, 115, 12908-12919.	3.1	15
56	Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie, 2016, 128, 906-910.	2.0	15
57	Engineering Hydrogen-Bonded Hexagonal Networks Built from Flexible 1,3,5-Trisubstituted Derivatives of Benzene. Journal of Organic Chemistry, 2016, 81, 3076-3086.	3.2	15
58	Predictably Ordered Open Hydrogen-Bonded Networks Built from Indeno[1,2- <i>b</i>]fluorenes. Journal of Organic Chemistry, 2017, 82, 8536-8547.	3.2	15
59	Triptycene 1,2-Quinones and Quinols: Permeable Crystalline Redox-Active Molecular Solids. Journal of Organic Chemistry, 2018, 83, 15426-15437.	3.2	15
60	Syntheses of mono and bimetallic cyamelurate polymers with reversible chromic behaviour. Dalton Transactions, 2019, 48, 7006-7014.	3.3	15
61	Modular Construction of Porous Hydrogenâ€Bonded Molecular Materials from Melams. Chemistry - A European Journal, 2020, 26, 7026-7040.	3.3	14
62	Bond-valence approach to the copper-copper and copper-oxygen bonding in binuclear copper(II) complexes: Structure of tetrakis(2-fluoro-benzoato-O,OÂ)-bis(2-fluorobenzoate-O) dicopper(II). Zeitschrift Fur Kristallographie - Crystalline Materials, 2000, 215, 56-60.	0.8	13
63	Using Systematic Comparisons of 2D and 3D Structures To Reveal Principles of Molecular Organization. Tetraesters of Linear Bisisophthalic Acids. Journal of Physical Chemistry C, 2012, 116, 13052-13062.	3.1	13
64	Foiling Normal Patterns of Crystallization by Design. Polymorphism of Phosphangulene Chalcogenides. Crystal Growth and Design, 2019, 19, 5390-5406.	3.0	13
65	Designing Tetraoxa[8]circulenes To Serve as Hosts and Sensors. Journal of the American Chemical Society, 2022, 144, 556-572.	13.7	12
66	Molecular networks built from weakly interacting nitro-substituted pentaerythrityl tetraaryl ethers. CrystEngComm, 2005, 7, 158-160.	2.6	11
67	Hydrogen-bonded networks in crystals built from bis(biguanides) and their salts. Canadian Journal of Chemistry, 2006, 84, 1426-1433.	1.1	11
68	Self-Assembly of Noncyclic Bis- <scp>d</scp> - and <scp>l</scp> -tripeptides into Higher Order Tubular Constructs:  Design, Synthesis, and X-ray Crystal Superstructure. Journal of Organic Chemistry, 2008, 73, 1181-1191.	3.2	11
69	Glass versus Crystal: A Balancing Act between Competing Intermolecular Interactions. Crystal Growth and Design, 2017, 17, 2365-2373.	3.0	11
70	Building Large Structures with Curved Aromatic Surfaces by Complexing Metals with Phosphangulene. Journal of the American Chemical Society, 2019, 141, 18740-18753.	13.7	11
71	Synthesis and Structure of Spirocyclic Tetraethers Derived from [1,1′-Binaphthalene]-2,2′-diol and Pentaerythritol. Journal of Organic Chemistry, 2008, 73, 5255-5263.	3.2	10
72	Four New Ag(I) Coordination Polymers: Synthesis, Crystal Structures and Thermal Stability. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 816-824.	3.7	10

#	Article	IF	CITATIONS
73	Mimicking 2,2′:6′,2′′:6′′,2′′′a€²-quaterpyridine complexes for the light-driven hydrogen ev synthesis, structural, thermal and physicochemical characterizations. RSC Advances, 2019, 9, 28153-28164.	olution re 3.6	action: 10
74	Design of a [FeFe] macrocyclic metallotecton for light-driven hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 2699-2708.	7.1	10
75	Tetrakis(4-carboxyphenyl)methane–dimethyl sulfoxide–toluene (1/4/1). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o518-o520.	0.2	9
76	Two-dimensional hydrogen-bonded networks in crystals of diboronic acids. CrystEngComm, 2006, , .	2.6	9
77	Engineering homologous molecular organization in 2D and 3D. Cocrystallization of aminoazines and alkanecarboxylic acids. CrystEngComm, 2011, 13, 5571.	2.6	9
78	Putting Fullerenes in Their Place: Cocrystallizing C ₆₀ and C ₇₀ with Phosphangulene Chalcogenides. Crystal Growth and Design, 2019, 19, 5418-5428.	3.0	9
79	Programmed Molecular Construction: Driving the Self-Assembly by Coordination and Hydrogen Bonds Using 6-(Pyridin-2-yl)-1,3,5-triazine-2,4-diamine with M(NO3)2 Salts. ACS Omega, 2019, 4, 2708-2718.	3.5	9
80	Phosphangulene: A Molecule for All Chemists. Accounts of Chemical Research, 2020, 53, 2472-2482.	15.6	9
81	Weak Interactions in the Crystal Structures of Tetraacetylenes Derived from Pentaerythrityl Tetraphenyl Ether. Crystal Growth and Design, 2006, 6, 1335-1340.	3.0	8
82	Influence of the counteranion on silver(I)–dithioether coordination polymers. Polyhedron, 2010, 29, 2966-2975.	2.2	8
83	On the Interaction of Acetone with Electrophilic Metallocavitands Having Extended Cavities. Inorganic Chemistry, 2012, 51, 10384-10393.	4.0	8
84	Molecular Organization in Crystals of Bis(diaminotriazinyl)-Substituted Derivatives of Benzene, Pyridine, and Pyrazine. Crystal Growth and Design, 2019, 19, 1299-1307.	3.0	8
85	Amidine/Amidinate Cobalt Complexes: One-Pot Synthesis, Mechanism, and Photocatalytic Application for Hydrogen Production. Inorganic Chemistry, 2020, 59, 14910-14919.	4.0	8
86	Synthesis, crystal structure, characterization of pyrazine diaminotriazine based complexes and their systematic comparative study with pyridyl diaminotriazine based complexes for light-driven hydrogen production. Polyhedron, 2020, 180, 114412.	2.2	8
87	Flexible and porous 2D layered structures based on mixed-linker metal–organic frameworks for gas sorption studies. Dalton Transactions, 2021, 50, 8727-8735.	3.3	8
88	Comparing Crystallizations in Three Dimensions and Two Dimensions: Behavior of Isomers of [2,2′-Bipyridine]dicarbonitrile and [1,10-Phenanthroline]dicarbonitrile. Crystal Growth and Design, 2017, 17, 5242-5248.	3.0	7
89	The first Fe(II) complex bearing end-to-end dicyanamide as a double bridging ligand: Crystallography study and Hirshfeld surface analysis; completed with a CSD survey. Journal of Molecular Structure, 2018, 1173, 697-706.	3.6	7
90	Crystal-State Structure Analysis of β-Hydroxy-γ-lactam Constrained Ser/Thr Peptidomimetics. Heterocycles, 2010, 82, 729.	0.7	7

#	Article	IF	CITATIONS
91	Experimental and theoretical evidence of attractive interactions between dianions: [PdCl ₄] ^{2â^'} â< [PdCl ₄] ^{2â^'} . Chemical Communications, 2021, 57, 13305-13308.	4.1	7
92	(<i>E</i>)-4,4′-Bis(1,3-benzoxazol-2-yl)stilbene at 150 and 375â€K. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o11-o14.	0.4	6
93	Building coordination polymers using dipyridone ligands. CrystEngComm, 2020, 22, 441-447.	2.6	6
94	Controlling Molecular Organization by Using Phenyl Embraces of Multiple Trityl Groups. Journal of Organic Chemistry, 2020, 85, 4026-4035.	3.2	6
95	X-band electron paramagnetic resonance of a quasi-bidimensional molecular composite [NH3î—,(CH2)4î—,NH3]CuCl4. Solid State Communications, 1996, 97, 669-674.	1.9	5
96	Phase transitions in a two-dimensional molecular complex NH ₃ -(CH ₂) ₄ -NH ₃ CuCl ₄ . Phase Transitions, 1998, 66, 81-98.	1.3	5
97	Unconventional field induced phases in a quantum magnet formed by free radical tetramers. Physical Review B, 2018, 97, .	3.2	5
98	Surprising Chemistry of 6-Azidotetrazolo[5,1- <i>a</i>]phthalazine: What a Purported Natural Product Reveals about the Polymorphism of Explosives. Journal of Organic Chemistry, 2022, 87, 6680-6694.	3.2	5
99	Dicyclohexylammonium hydrogen phenylphosphonate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1432-o1432.	0.2	4
100	Structure and magnetic properties of binuclear [Cu(amppz)(μ-NC)Fe(CN)4NO] (amppz =) Tj ETQq0 0 0 rgBT /Ov	erlock 10 2.2	Tf 50 382 1
101	Crystal structure of bis(2-methyl-1H-imidazol-3-ium) tetrachloridocobaltate(II). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1064-1066.	0.5	4
102	Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-l̂º2O,Oâ€2)stannate(IV). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 520-522.	0.5	4
103	Bis(phosphangulene)iminium Salts. Holding on to Fullerenes with Phangs. Crystal Growth and Design, 2020, 20, 1319-1327.	3.0	4
104	Molecular Tectonics. Use of Br••a€¢aryl Supramolecular Interactions for the construction of Organized Networks from 9,9'-spirobifluorene in the Crystalline State. CheM, 2011, 1, 52-61.	0.2	4
105	Crystal structure of bis(2-methyl-1 <i>H</i> -imidazol-3-ium) dihydroxidobis(oxalato-l² ² <i>O</i> ¹ , <i>O</i> ²)stannate(IV) monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 355-357.	0.5	4
106	The Role of Hydrogen Bonds in Interactions between [PdCl4]2â^' Dianions in Crystal. Molecules, 2022, 27, 2144.	3.8	4
107	Electron paramagnetic resonance and spin-lattice relaxation in two-dimensional systems. Applied Magnetic Resonance, 1995, 8, 319-333.	1.2	3
108	Spectroscopic and Crystallographic Study of Phase Transitions in Zn Bidimensional Complexes. Molecular Crystals and Liquid Crystals, 1995, 269, 55-73.	0.3	3

#	Article	IF	CITATIONS
109	1,4-Butanediammonium Tetrabromopalladate(II). Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 1253-1255.	0.4	3
110	Tetrakis(2-methoxy-5-pyridyl)silane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o4136-o4138.	0.2	3
111	Pentane-1,5-diammonium tetrachloridopalladate(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m208-m208.	0.2	3
112	Class engineering of aminotriazine-based materials with sub-ambient <i>T</i> _g and high kinetic stability. CrystEngComm, 2020, 22, 4275-4288.	2.6	3
113	Synthesis, characterization and Hirshfeld surface analysis of a mixed-ligand copper (II) coordination polymer from 1,4,8,11-tetraazacyclotetradecane and pyromellitic dianhydride. Transition Metal Chemistry, 2021, 46, 283-290.	1.4	3
114	Crystal structure ofcatena-poly[N,N,N′,N′-tetramethylguanidinium [(chloridocadmate)-di-ι⁄4-chlorido]]. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1-3.	0.5	3
115	Crystal structure of diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 589-592.	0.5	3
116	Probing the Relationship between Gelation and Crystallization by Using Salts of Lithocholic Acid. Crystal Growth and Design, 2022, 22, 643-652.	3.0	3
117	A new pseudopolymorph of hexakis(4-cyanophenyl)benzene. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o4-o6.	0.4	2
118	Synthesis, crystal structures and thermal analysis of two new coordination polymers. Comptes Rendus Chimie, 2011, 14, 991-996.	0.5	2
119	Crystal structure of bis(N,N,N′,N′-tetramethylguanidinium) tetrachloridocuprate(II). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1047-1049.	0.5	2
120	Synthesis of Salts of 1,2,5,6- and 1,4,5,8-Naphthalenetetramine. ACS Omega, 2017, 2, 6023-6030.	3.5	2
121	Intercalated 2D+2D hydrogen-bonded sheets in co-crystals of cobalt salt with 1 <i>H</i> ,1′ <i>H</i> -[3,3′]bipyridinyl-6,6′-dione. Canadian Journal of Chemistry, 2020, 98, 347-351.	1.1	2
122	Crystal structures of the two salts 2-methyl-1 <i>H</i> -imidazol-3-ium nitrate–2-methyl-1 <i>H</i> -imidazole (1/1) and 2-methyl-1 <i>H</i> -imidazol-3-ium nitrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 482-485.	0.5	2
123	Design, structural characterization and Hirshfeld surface analysis of Ni(II) and Zn(II) coordination polymers using mixed linker synthetic strategy based on tetratopic and macrocyclic N-donor ligands. Journal of Molecular Structure, 2022, 1254, 132317.	3.6	2
124	Hydrogen Bond Patterns of Dipyridone and Bis(Hydroxypyridinium) Cations. ACS Omega, 2021, 6, 35649-35656.	3.5	2
125	1,3-Diphenoxy-2,2-bis(phenoxymethyl)propane. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o799-o801.	0.2	1
126	catena-Poly[benzylmethylammonium [[diaquadichloromanganate(II)]-μ-chloro]]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m1201-m1203.	0.2	1

#	Article	IF	CITATIONS
127	Tetrakis(3,5-dimethoxyphenyl)silane. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2563-o2566.	0.2	1
128	<i>trans</i> -Dichloridobis[(pyridin-4-yl)boronic acid-κ <i>N</i>]palladium(II) dimethyl sulfoxide disolvate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m518-m518.	0.2	1
129	Crystal structure of (ferrocenylmethyl)dimethylammonium hydrogen oxalate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 947-949.	0.5	1
130	Crystal structure of bis(1,4-diazabicyclo[2.2.2]octan-1-ium) thiosulfate dihydrate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 273-275.	0.5	1
131	Low-bandgap push–pull molecules in polymer matrices for use in thin-film organic photovoltaic devices. Canadian Journal of Chemistry, 2020, 98, 564-574.	1.1	1
132	Structural characterization, dielectric properties, optical and theoretical DFT study of (C8H14N2)(BF4)2·H2O compound. Journal of the Iranian Chemical Society, 2021, 18, 2065.	2.2	1
133	Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 458-460.	0.5	1
134	Probing the Relationship between Crystallization and Gelation by Using Ammonium Salts of Bile Acids. Crystal Growth and Design, 0, , .	3.0	1
135	Diphenoquinones Redux. Journal of Organic Chemistry, 2022, 87, 7673-7695.	3.2	1
136	Cover Picture: Designing Permeable Molecular Crystals That React with External Agents To Give Crystalline Products (Angew. Chem. Int. Ed. 43/2003). Angewandte Chemie - International Edition, 2003, 42, 5253-5253.	13.8	0
137	Pentaerythrityl tetrakis(4-bromobenzyl ether). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o601-o603.	0.2	0
138	Bis(2,2′-bipyrimidine-κ2N1,N1′)palladium(II) bis(tetrafluoroborate) acetonitrile monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m1347-m1348.	0.2	0
139	Frontispiece: Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0
140	Frontispiz: Building Giant Carbocycles by Reversible Câ^'C Bond Formation. Angewandte Chemie, 2016, 128, .	2.0	0
141	Synthesis and characterization of 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1044-1047.	0.5	0
142	Crystal structure of octane-1,8-diaminium 4,4′-(diazene-1,2-diyl)dibenzoate monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 724-727.	0.5	0
143	N,N,N-Tributylbutan-1-aminium (T-4)-(cyano-κC)trihydroborate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1713-o1713.	0.2	0
144	Crystal structures of the solvent-free and ethanol disolvate forms of 4,4′-(diazenediyl)bis(2,3,5,6-tetrafluorobenzoic acid) exemplifying self-stabilized azobenzene <i>cis</i> -configurations. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1486-1490.	0.5	0

#	Article	IF	CITATIONS
145	<i>fac</i> -Triaqua(1,10-phenanthroline-β ² <i>N</i> , <i>N</i> ′)(sulfato-β <i>O</i>)cobalt(II): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 835-840.	0.5	0
146	An Insight into Sensitive Detection of Metal ions Using a Novel Cobalt MOF: Single Crystal, Photoluminescence, and Theoretical Studies. CrystEngComm, 0, , .	2.6	0