Spyros G Pavlostathis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265707/publications.pdf

Version: 2024-02-01

257 papers

11,662 citations

23544 58 h-index 92 g-index

260 all docs

260 docs citations

260 times ranked 10940 citing authors

#	Article	lF	CITATIONS
1	Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Advanced Functional Materials, 2018, 28, 1705295.	7.8	370
2	Adsorption Behaviors of Organic Micropollutants on Zirconium Metal–Organic Framework UiO-66: Analysis of Surface Interactions. ACS Applied Materials & Therefore, 2017, 9, 41043-41054.	4.0	327
3	Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell. Environmental Science & Env	4.6	290
4	Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Current Opinion in Biotechnology, 2015, 33, 296-304.	3.3	282
5	Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number. Chemical Engineering Journal, 2019, 358, 321-330.	6.6	270
6	Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water. Chemical Engineering Journal, 2013, 220, 98-106.	6.6	235
7	Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539, 223-234.	5.0	213
8	Long-Term Exposure to Benzalkonium Chloride Disinfectants Results in Change of Microbial Community Structure and Increased Antimicrobial Resistance. Environmental Science & Emp; Technology, 2013, 47, 9730-9738.	4.6	170
9	Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. Journal of Hazardous Materials, 2011, 187, 274-282.	6.5	155
10	Desorption kinetics of selected volatile organic compounds from field contaminated soils. Environmental Science & Environmenta	4.6	148
11	Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation. Chemical Engineering Journal, 2019, 359, 79-87.	6.6	136
12	Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. Applied and Environmental Microbiology, 2018, 84, .	1.4	134
13	Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 460-467.	3.2	133
14	Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnology and Bioengineering, 1985, 27, 334-344.	1.7	132
15	Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 2004, 38, 1838-1852.	5.3	131
16	Desorptive behavior of trichloroethylene in contaminated soil. Environmental Science & Emp; Technology, 1991, 25, 274-279.	4.6	125
17	Lattice-Defect-Enhanced Adsorption of Arsenic on Zirconia Nanospheres: A Combined Experimental and Theoretical Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29736-29745.	4.0	121
18	Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation. Journal of Hazardous Materials, 2020, 392, 122345.	6.5	121

#	Article	lF	CITATIONS
19	A kinetic model for anaerobic digestion of biological sludge. Biotechnology and Bioengineering, 1986, 28, 1519-1530.	1.7	120
20	Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(ii) ions in real environmental water samples. Journal of Materials Chemistry A, 2013, 1, 8280.	5.2	119
21	Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg 2+ from water. Journal of Hazardous Materials, 2016, 306, 313-322.	6.5	117
22	Distributed model of solid waste anaerobic digestion: Effects of leachate recirculation and pH adjustment. Biotechnology and Bioengineering, 2003, 81, 66-73.	1.7	115
23	Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference. Chemical Engineering Journal, 2019, 359, 176-185.	6.6	114
24	Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight. Journal of Hazardous Materials, 2020, 387, 121676.	6.5	111
25	Aerobic biodegradation of selected monoterpenes. Applied Microbiology and Biotechnology, 1996, 45, 831-838.	1.7	109
26	Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes and Pigments, 2005, 67, 35-46.	2.0	108
27	Methane recovery from the anaerobic codigestion of municipal sludge and FOG. Bioresource Technology, 2009, 100, 3701-3705.	4.8	106
28	Magnetic ion-imprinted and –SH functionalized polymer for selective removal of Pb(II) from aqueous samples. Applied Surface Science, 2014, 292, 438-446.	3.1	104
29	Fermentation of Insoluble Cellulose by Continuous Cultures of <i>Ruminococcus albus</i> . Applied and Environmental Microbiology, 1988, 54, 2655-2659.	1.4	104
30	Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2017, 5, 4144-4153.	3.2	103
31	Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO ₂ Ion Cages. Environmental Science & Environ	4.6	102
32	Sorption of quaternary ammonium compounds to municipal sludge. Water Research, 2010, 44, 2303-2313.	5.3	101
33	Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin \hat{l} ±-Fe 2 O 3 nanosheets with highly exposed (1 1 0) facets: A superior photocatalyst for degradation of bisphenol S. Chemical Engineering Journal, 2017, 323, 64-73.	6.6	100
34	Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Research, 2006, 40, 3660-3668.	5.3	97
35	Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnology and Bioengineering, 2007, 96, 444-455.	1.7	96
36	Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge. Water Research, 2011, 45, 1238-1246.	5. 3	93

#	Article	IF	CITATIONS
37	Tannic acid-based adsorbent with superior selectivity for lead(II) capture: Adsorption site and selective mechanism. Chemical Engineering Journal, 2019, 364, 160-166.	6.6	93
38	Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems. Applied Microbiology and Biotechnology, 1997, 47, 572-577.	1.7	89
39	Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Advances, 2017, 7, 49024-49030.	1.7	87
40	Transformaton of 2,4,6â€trinitrotoluene by the aquatic plant <i>Myriophyllum spicatum</i> Environmental Toxicology and Chemistry, 1998, 17, 2266-2273.	2.2	85
41	Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell. Environmental Science & Electrolysis Cell. Environmental Electrolysis Cell. Electrolysis Cell. Environmental Electrolysis Cell. Electrolysis Cel	4.6	83
42	Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environmental Microbiology, 2013, 15, 2850-2864.	1.8	82
43	Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosensors and Bioelectronics, 2019, 141, 111444.	5.3	81
44	Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International, 2021, 152, 106512.	4.8	81
45	Selective Separation of Cu(II) from Aqueous Solution with a Novel Cu(II) Surface Magnetic Ion-Imprinted Polymer. Industrial & Engineering Chemistry Research, 2011, 50, 6355-6361.	1.8	79
46	Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Research, 2019, 166, 115076.	5.3	79
47	Methanogenic Biocathode Microbial Community Development and the Role of Bacteria. Environmental Science & Environmental Scienc	4.6	75
48	Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production. Science of the Total Environment, 2018, 633, 1012-1021.	3.9	74
49	Aerobic biodegradation of thiocyanate. Water Research, 1997, 31, 2761-2770.	5.3	73
50	Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. Journal of Hazardous Materials, 2008, 160, 594-600.	6.5	70
51	Physicochemical properties of selected monoterpenes. Environment International, 1998, 24, 353-358.	4.8	68
52	Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environmental Science & Environmental Sc	4.6	66
53	Aerobic Biotransformation of <i>n</i> -Tetradecylbenzyldimethylammonium Chloride by an Enriched Pseudomonas spp. Community. Environmental Science & Env	4.6	66
54	Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers. Journal of Chemical & Chemi	1.0	66

#	Article	IF	CITATIONS
55	Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport?. Applied Microbiology and Biotechnology, 2008, 78, 841-852.	1.7	64
56	Mesophilic and Thermophilic Anaerobic Digestion of Municipal Sludge and Fat, Oil, and Grease. Water Environment Research, 2009, 81, 476-485.	1.3	63
57	Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite and its preferential photocatalytic degradation towards target contaminant. Journal of Hazardous Materials, 2014, 278, 108-115.	6.5	63
58	Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems. Renewable and Sustainable Energy Reviews, 2020, 125, 109816.	8.2	63
59	Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Applied Microbiology and Biotechnology, 1990, 33, 109.	1.7	60
60	Microbial Community Degradation of Widely Used Quaternary Ammonium Disinfectants. Applied and Environmental Microbiology, 2014, 80, 5892-5900.	1.4	60
61	A g-C ₃ N ₄ @Au@SrAl ₂ O ₄ :Eu ²⁺ ,Dy ³⁺ as an efficient plasmonic photocatalyst for round-the-clock environmental purification and hvdrogen evolution, lournal of Materials Chemistry A. 2019, 7, 19173-19186.	composite 5.2	² 60
62	Biological Decolorization of the Azo Dye Reactive Red 2 Under Various Oxidation-Reduction Conditions. Water Environment Research, 2000, 72, 698-705.	1.3	59
63	The Anaerobic Biodegradability of Municipal Sludge and Fat, Oil, and Grease at Mesophilic Conditions. Water Environment Research, 2008, 80, 212-221.	1.3	59
64	Activated biochar derived from pomelo peel as a high-capacity sorbent for removal of carbamazepine from aqueous solution. RSC Advances, 2017, 7, 54969-54979.	1.7	58
65	Optimization of adsorption configuration by DFT calculation for design of adsorbent: A case study of palladium ion-imprinted polymers. Journal of Hazardous Materials, 2019, 379, 120791.	6.5	57
66	Effects of salinity and COD/N on denitrification and bacterial community in dicyclic-type electrode based biofilm reactor. Chemosphere, 2018, 192, 328-336.	4.2	56
67	An extension of the Anaerobic Digestion Model No. 1 to include the effect of nitrate reduction processes. Water Science and Technology, 2006, 54, 41-49.	1.2	55
68	Syntrophic acetate oxidation in two-phase (acid–methane) anaerobic digesters. Water Science and Technology, 2011, 64, 1812-1820.	1.2	55
69	Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chemical Engineering Journal, 2020, 382, 123009.	6.6	55
70	Kinetics of the Sequential Microbial Reductive Dechlorination of Hexachlorobenzene. Environmental Science & Environmental Scie	4.6	54
71	Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane. Environmental Science & Environmental Science	4.6	54
72	Energy and Nutrient Recovery from Sewage Sludge and Manure via Anaerobic Digestion with Hydrothermal Pretreatment. Environmental Science & Environment	4.6	54

#	Article	IF	Citations
73	A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies. Resources, Conservation and Recycling, 2021, 169, 105519.	5.3	54
74	Microbial Reductive Transformation of Pentachloronitrobenzene under Methanogenic Conditions. Environmental Science & Environme	4.6	53
75	Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnology and Bioengineering, 2007, 97, 1448-1459.	1.7	53
76	Transformation of Benzalkonium Chloride under Nitrate Reducing Conditions. Environmental Science & Env	4.6	53
77	Kinetics of Insoluble Cellulose Fermentation by Continuous Cultures of <i>Ruminococcus albus</i> Applied and Environmental Microbiology, 1988, 54, 2660-2663.	1.4	53
78	Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review. Science of the Total Environment, 2022, 816, 151621.	3.9	53
79	Photodegradation of Veterinary Ionophore Antibiotics under UV and Solar Irradiation. Environmental Science & Environmental Sci	4.6	52
80	Novel molecularly imprinted polymer using 1 -(\hat{l} ±-methyl acrylate)-3-methylimidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography. Journal of Chromatography A, 2011, 1218, 1115-1121.	1.8	50
81	Enhanced azo dye decolorization and microbial community analysis in a stacked bioelectrochemical system. Chemical Engineering Journal, 2018, 354, 351-362.	6.6	50
82	Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge. Environmental Science & Environmental Science & 2020, 54, 8362-8372.	4.6	48
83	Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems. Water Research, 2013, 47, 449-460.	5.3	47
84	Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter. Journal of Chromatography A, 2013, 1312, 10-17.	1.8	46
85	Adsorption, inhibition, and biotransformation of ciprofloxacin under aerobic conditions. Bioresource Technology, 2013, 144, 644-651.	4.8	45
86	Defluoridation investigation of Yttrium by laminated Y-Zr-Al tri-metal nanocomposite and analysis of the fluoride sorption mechanism. Science of the Total Environment, 2019, 648, 1342-1353.	3.9	45
87	Rationally designed conjugated microporous polymers for contaminants adsorption. Science of the Total Environment, 2021, 750, 141683.	3.9	45
88	Biodegradation of Veterinary Ionophore Antibiotics in Broiler Litter and Soil Microcosms. Environmental Science & Environmenta	4.6	43
89	Genomic and Transcriptomic Insights into How Bacteria Withstand High Concentrations of Benzalkonium Chloride Biocides. Applied and Environmental Microbiology, 2018, 84, .	1.4	43
90	Decolorization kinetics of the azo dye Reactive Red 2 under methanogenic conditions: effect of long-term culture acclimation. Biodegradation, 2005, 16, 135-146.	1.5	42

#	Article	IF	Citations
91	Biological Decolorization of Reactive Anthraquinone and Phthalocyanine Dyes Under Various Oxidation-Reduction Conditions. Water Environment Research, 2006, 78, 156-169.	1.3	42
92	Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresource Technology, 2012, 118, 73-81.	4.8	41
93	Mesoporous TiO2 with WO3 functioning as dopant and light-sensitizer: A highly efficient photocatalyst for degradation of organic compound. Journal of Hazardous Materials, 2018, 358, 44-52.	6.5	41
94	Simultaneous carbon removal, denitrification and power generation in a membrane-less microbial fuel cell. Bioresource Technology, 2013, 146, 1-6.	4.8	40
95	Efficient antimony removal by self-assembled core-shell nanocomposite of Co3O4@rGO and the analysis of its adsorption mechanism. Environmental Research, 2020, 187, 109657.	3.7	39
96	New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands. Water Research, 2022, 215, 118251.	5.3	39
97	The extent of fermentative transformation of phenolic compounds in the bioanode controls exoelectrogenic activity in a microbial electrolysis cell. Water Research, 2017, 109, 299-309.	5.3	38
98	Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. Bioresource Technology, 2021, 322, 124534.	4.8	38
99	Determination of malachite green in fish water samples by cloudâ€point extraction coupled to cationâ€selective exhaustive injection and sweepingâ€MEKC. Electrophoresis, 2010, 31, 688-694.	1.3	37
100	Inhibitory effects and biotransformation potential of ciprofloxacin under anoxic/anaerobic conditions. Bioresource Technology, 2013, 150, 28-35.	4.8	37
101	Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints. Water Research, 2015, 87, 432-445.	5.3	37
102	Removal and toxicity reduction of naphthenic acids by ozonation and combined ozonation-aerobic biodegradation. Bioresource Technology, 2015, 179, 339-347.	4.8	37
103	Synthesis of (ZrO2-Al2O3)/GO nanocomposite by sonochemical method and the mechanism analysis of its high defluoridation. Journal of Hazardous Materials, 2020, 381, 120954.	6.5	36
104	High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). Journal of Hazardous Materials, 2021, 416, 125829.	6.5	36
105	New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study. Journal of Hazardous Materials, 2018, 346, 218-225.	6.5	35
106	Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface soil. Applied Microbiology and Biotechnology, 1991, 36, 416-20.	1.7	34
107	Effect of contaminant and organic matter bioavailability on the microbial dehalogenation of sediment-bound chlorobenzenes. Water Research, 1996, 30, 2669-2680.	5.3	34
108	Novel carboxylation treatment and characterization of multiwalled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA. Mikrochimica Acta, 2010, 169, 33-40.	2.5	34

#	Article	IF	CITATIONS
109	Preparation of waterâ€compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer. Journal of Applied Polymer Science, 2013, 127, 2884-2890.	1.3	33
110	Progress toward Hydrogels in Removing Heavy Metals from Water: Problems and Solutions—A Review. ACS ES&T Water, 2021, 1, 1098-1116.	2.3	33
111	Three-dimensional electrode interface assembled from rGO nanosheets and carbon nanotubes for highly electrocatalytic oxygen reduction. Chemical Engineering Journal, 2019, 378, 122127.	6.6	32
112	Real-Time Monitoring and Control of Sequencing Batch Reactors for Secondary Treatment of a Poultry Processing Wastewater. Water Environment Research, 2000, 72, 585-592.	1.3	31
113	Biotransformation of 2,4,6-trinitrotoluene in a continuous-flow Anabaena sp. system. Water Research, 2002, 36, 1699-1706.	5.3	31
114	Nitrate reduction in a simulated free-water surface wetland system. Water Research, 2011, 45, 5587-5598.	5.3	31
115	Inhibition and biotransformation potential of naphthenic acids under different electron accepting conditions. Water Research, 2013, 47, 406-418.	5.3	31
116	Lithium ion-imprinted polymers with hydrophilic PHEMA polymer brushes: The role of grafting density in anti-interference and anti-blockage in wastewater. Journal of Colloid and Interface Science, 2017, 492, 146-156.	5.0	31
117	Development of an anion imprinted polymer for high and selective removal of arsenite from wastewater. Science of the Total Environment, 2018, 639, 110-117.	3.9	30
118	Carbon quantum dot-sensitized and tunable luminescence of Ca ₁₉ Mg ₂ (PO ₄) ₁₄ :Ln ³⁺ (Ln ³⁺ =) ⟨i⟩via) Tj ETQq0 2.7) 0 0 rgBT /Ove
119	Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: Resource transformation and energy balance. Chemical Engineering Journal, 2021, 410, 127430.	6.6	29
120	Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Science of the Total Environment, 2021, 778, 146301.	3.9	29
121	Reductive Decolorization of a Textile Reactive Dyebath Under Methanogenic Conditions. Applied Biochemistry and Biotechnology, 2003, 109, 207-226.	1.4	28
122	Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture. Biotechnology and Bioengineering, 2007, 98, 756-763.	1.7	28
123	Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions. Water Research, 2021, 194, 116958.	5.3	28
124	Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. Journal of Hazardous Materials, 2022, 423, 127000.	6.5	28
125	Biotransformation of 2,4,6-trinitrotoluene inAnabaenasp. cultures. Environmental Toxicology and Chemistry, 1999, 18, 412-419.	2.2	27
126	Effect of Tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene. Environmental Toxicology and Chemistry, 1999, 18, 1408-1416.	2.2	27

#	Article	IF	Citations
127	Kinetics and modeling of autotrophic thiocyanate biodegradation. , 1999, 62, 1-11.		27
128	Electroanalysis of Bisphenol A at a Multiwalled Carbon Nanotubesâ€gold Nanoparticles Modified Glassy Carbon Electrode. Electroanalysis, 2009, 21, 2491-2494.	1.5	27
129	One–step reductive synthesis of Ti3+ self–doped elongated anatase TiO2 nanowires combined with reduced graphene oxide for adsorbing and degrading waste engine oil. Journal of Hazardous Materials, 2019, 378, 120752.	6. 5	27
130	Effect of polyelectrolytes and quaternary ammonium compounds on the anaerobic biological treatment of poultry processing wastewater. Water Research, 2007, 41, 1334-1342.	5 . 3	26
131	Effect of Nitrate Reduction on the Microbial Reductive Transformation of Pentachloronitrobenzene. Environmental Science & Envi	4.6	26
132	Selective removal Pb(<scp>ii</scp>) ions form wastewater using Pb(<scp>ii</scp>) ion-imprinted polymers with bi-component polymer brushes. RSC Advances, 2017, 7, 25811-25820.	1.7	26
133	Selective removal and recovery of La(III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 106701.	3.3	26
134	Desorption of chlorinated organic compounds from a contaminated estuarine sediment. Environmental Toxicology and Chemistry, 1997, 16, 1598-1605.	2.2	25
135	Microbial reductive dechlorination of hexachloro-1,3-butadiene in a methanogenic enrichment culture. Water Research, 2000, 34, 4437-4445.	5.3	25
136	Biological oxidation of thiosulfate in mixed heterotrophic/autotrophic cultures. Water Research, 1998, 32, 1363-1372.	5. 3	24
137	Effect of temperature and benzalkonium chloride on nitrate reduction. Bioresource Technology, 2011, 102, 5039-5047.	4.8	24
138	Aerobic biotransformation potential of a commercial mixture of naphthenic acids. Water Research, 2013, 47, 5520-5534.	5 . 3	24
139	Effect of Alkyl Side Chain Location and Cyclicity on the Aerobic Biotransformation of Naphthenic Acids. Environmental Science & Environmental Science	4.6	24
140	Enhanced photocatalytic properties of ZnFe ₂ O ₄ -doped ZnIn ₂ S ₄ heterostructure under visible light irradiation. RSC Advances, 2016, 6, 83012-83019.	1.7	24
141	Effect of Interstage Hydrothermal Treatment on Anaerobic Digestion of Sewage Sludge: Speciation Evolution of Phosphorus, Iron, and Sulfur. ACS Sustainable Chemistry and Engineering, 2020, 8, 16515-16525.	3.2	24
142	Long-term evaluation of the effect of peracetic acid on a mixed anoxic culture: Organic matter degradation, denitrification, and microbial community structure. Chemical Engineering Journal, 2021, 411, 128447.	6.6	24
143	Simultaneous Recycling of Critical Metals and Aluminum Foil from Waste LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode via Ethylene Glycol–Citric Acid System. ACS Sustainable Chemistry and Engineering, 2021, 9, 16133-16142.	3.2	24
144	Potential and Limitations of Microbial Reductive Dechlorination for Bioremediation Applications. Water, Air and Soil Pollution, 2003, 3, 117-129.	0.8	23

#	Article	IF	CITATIONS
145	Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresource Technology, 2014, 170, 385-394.	4.8	23
146	Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode. Environmental Science & Environmen	4.6	23
147	rGO-stabilized MnO/N-doped carbon nanofibers for efficient removal of Pb(II) ion and catalytic degradation of methylene blue. Journal of Materials Science, 2017, 52, 5117-5132.	1.7	23
148	Coupled methane and nitrous oxide biotransformation in freshwater wetland sediment microcosms. Science of the Total Environment, 2019, 648, 916-922.	3.9	23
149	Insights into the role of cross-linking agents on polymer template effect: A case study of anionic imprinted polymers. Chemical Engineering Journal, 2021, 420, 129611.	6.6	23
150	Transformation and Mobility of Cu, Zn, and Cr in Sewage Sludge during Anaerobic Digestion with Preor Interstage Hydrothermal Treatment. Environmental Science & Environmental Science & 2021, 55, 1615-1625.	4.6	23
151	High growth rate and substrate exhaustion results in rapid cell death and lysis in the thermophilic bacteriumGeobacillus thermoleovorans. Biotechnology and Bioengineering, 2006, 95, 84-95.	1.7	22
152	Biotransformation of Nitrosamines and Precursor Secondary Amines under Methanogenic Conditions. Environmental Science & Enviro	4.6	22
153	Reduced graphene oxide enhanced magnetic nanocomposites for removal of carbamazepine. Journal of Materials Science, 2018, 53, 15474-15486.	1.7	22
154	Grafting of molecularly imprinted polymers from the surface of Fe ₃ O ₄ nanoparticles containing double bond via suspension polymerization in aqueous environment: A selective sorbent for theophylline. Journal of Applied Polymer Science, 2011, 121, 1930-1937.	1.3	21
155	Modeling the fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresource Technology, 2013, 130, 278-287.	4.8	21
156	Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents. Environmental Pollution, 2020, 261, 114177.	3.7	21
157	Aerobic biodegradation of a silver-bearing photoprocessing wastewater. Environmental Toxicology and Chemistry, 1998, 17, 617-624.	2.2	20
158	Fate and transformation of thiocyanate and cyanate under methanogenic conditions. Applied Microbiology and Biotechnology, 1998, 49, 112-116.	1.7	20
159	Occurrence, Toxicity, and Biotransformation of Pentachloronitrobenzene and Chloroanilines. Critical Reviews in Environmental Science and Technology, 2014, 44, 473-518.	6.6	20
160	Toxicity of tetracycline and its transformation products to a phosphorus removing Shewanella strain. Chemosphere, 2020, 246, 125681.	4.2	20
161	Corrected response surface methodology for microalgae towards optimized ammonia nitrogen removal: A case of rare earth mining tailings wastewater in Southern Jiangxi, China. Journal of Cleaner Production, 2022, 343, 130998.	4.6	20
162	Modeling alkali consumption and digestibility improvement from alkaline treatment of wheat straw. Biotechnology and Bioengineering, 1985, 27, 345-354.	1.7	19

#	Article	IF	Citations
163	Fate and effect of silver on the anaerobic digestion process. Water Research, 2000, 34, 3957-3966.	5.3	19
164	Kinetics of the Microbial Reductive Dechlorination of Pentachloroaniline. Environmental Science & Environmental & Envi	4.6	19
165	A comprehensive model of simultaneous denitrification and methanogenic fermentation processes. Biotechnology and Bioengineering, 2010, 105, 98-108.	1.7	19
166	Long-term evaluation of the effect of peracetic acid on a mixed aerobic culture: Organic matter degradation, nitrification, and microbial community structure. Water Research, 2021, 190, 116694.	5.3	19
167	Enhancing nitrate removal from wastewater by integrating heterotrophic and autotrophic denitrification coupled manganese oxidation process (IHAD-MnO): Internal carbon utilization performance. Environmental Research, 2021, 194, 110744.	3.7	19
168	Weak electric field enabling enhanced selectivity of tannic acid-graphene aerogels for Pb2+ harvesting from wastewater. Chemical Engineering Journal, 2021, 416, 129144.	6.6	19
169	Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. Science of the Total Environment, 2021, 786, 147430.	3.9	19
170	Tuning the Sb(V) adsorption performance of La-MOFs via ligand engineering effect: Combined experiments with theoretical calculations. Chemical Engineering Journal, 2022, 435, 134874.	6.6	19
171	Fate and effect of the antioxidant ethoxyquin on a mixed methanogenic culture. Water Research, 2005, 39, 4251-4263.	5.3	18
172	Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications. Environmental Science & Environmental	4.6	18
173	Prolonged exposure of mixed aerobic cultures to low temperature and benzalkonium chloride affect the rate and extent of nitrification. Bioresource Technology, 2015, 179, 193-201.	4.8	18
174	The ins and outs of photo-assisted microbial electrochemical systems for synchronous wastewater treatment and bioenergy recovery. Resources, Conservation and Recycling, 2022, 181, 106230.	5.3	18
175	Aerobic biodegradation potential of photoprocessing wastewaters. Water Environment Research, 1994, 66, 211-219.	1.3	17
176	Reuse of Textile Reactive Azo Dyebaths Following Biological Decolorization. Water Environment Research, 2004, 76, 56-66.	1.3	17
177	Microbial transformation of pentachloronitrobenzene under nitrate reducing conditions. Biodegradation, 2010, 21, 691-702.	1.5	17
178	New insights in correlating greenhouse gas emissions and microbial carbon and nitrogen transformations in wetland sediments based on genomic and functional analysis. Journal of Environmental Management, 2021, 297, 113280.	3.8	17
179	Palladium-catalyzed hydrogen reduction and decolorization of reactive phthalocyanine dyes. Desalination, 2009, 248, 816-825.	4.0	16
180	Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES). Biotechnology and Bioengineering, 2017, 114, 961-969.	1.7	16

#	Article	IF	CITATIONS
181	Temperature and pH Effect on the Microbial Reductive Transformation of Pentachloronitrobenzene. Journal of Agricultural and Food Chemistry, 2007, 55, 5390-5398.	2.4	15
182	Effect of didecyl dimethyl ammonium chloride on nitrate reduction in a mixed methanogenic culture. Water Science and Technology, 2008, 57, 541-546.	1.2	15
183	Peracetic acid fate and decomposition in poultry processing wastewater streams. Bioresource Technology Reports, 2019, 7, 100285.	1.5	15
184	AEROBIC BIODEGRADATION OF A SILVER-BEARING PHOTOPROCESSING WASTEWATER. Environmental Toxicology and Chemistry, 1998, 17, 617.	2.2	15
185	Response of continuous-flow activated sludge reactors to photoprocessing wastewaters. Water Research, 1994, 28, 269-276.	5 . 3	14
186	The influence of iron reduction on the reductive biotransformation of pentachloronitrobenzene. European Journal of Soil Biology, 2007, 43, 264-275.	1.4	14
187	Fabrication of In-rich AgInS2 nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	14
188	Effect of sulfamethoxazole and oxytetracycline on enhanced biological phosphorus removal and bacterial community structure. Bioresource Technology, 2021, 319, 124067.	4.8	14
189	Biotransformation of phytosterols under aerobic conditions. Water Research, 2014, 58, 71-81.	5 . 3	13
190	Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Science China Chemistry, 2011, 54, 1319-1326.	4.2	12
191	Biotransformation of alkanoylcholines under methanogenic conditions. Water Research, 2012, 46, 2947-2956.	5. 3	12
192	Inhibition and Biotransformation Potential of Veterinary Ionophore Antibiotics under Different Redox Conditions. Environmental Science & Environmental	4.6	12
193	Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds. RSC Advances, 2016, 6, 65563-65571.	1.7	12
194	Highly Selective Adsorption of Antimonite by Novel Imprinted Polymer with Microdomain Confinement Effect. Journal of Chemical & Engineering Data, 2018, 63, 1513-1523.	1.0	12
195	Efficient Conversion of Aqueous-Waste-Carbon Compounds Into Electrons, Hydrogen, and Chemicals via Separations and Microbial Electrocatalysis. Frontiers in Energy Research, 2018, 6, .	1.2	12
196	Biotransformation of 4-Hydroxybenzoic Acid under Nitrate-Reducing Conditions in a MEC Bioanode. Environmental Science & Enviro	4.6	12
197	Specific spatial transfer PdCl42â° to [X-Pd-Y] by strong coordination interaction in a 3D palladium ion-imprinted polymer with footprint cavity. Chemical Engineering Journal, 2021, 405, 126613.	6.6	11
198	Comparative assessment of pre―and interâ€stage hydrothermal treatment of municipal sludge for increased methane production. Water Environment Research, 2021, 93, 1126-1137.	1.3	11

#	Article	IF	CITATIONS
199	Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading. Water Research, 2021, 200, 117268.	5.3	11
200	Application of headspace analysis for the determination of volatile organic compounds in contaminated soils. Environmental Technology (United Kingdom), 1992, 13, 23-33.	1.2	10
201	Direct electrochemical sensing of glucose using glucose oxidase immobilized on functionalized carbon nanotubes via a novel metal chelate-based affinity method. Mikrochimica Acta, 2012, 177, 159-166.	2.5	10
202	Fate and biotransformation of phytosterols during treatment of pulp and paper wastewater in a simulated aerated stabilization basin. Water Research, 2015, 68, 589-600.	5.3	10
203	Impact of hydraulic retention time and current on the microbial community and denitrification genes in a continuousâ€flow biofilm electrode reactor. Journal of Chemical Technology and Biotechnology, 2019, 94, 933-941.	1.6	10
204	Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock. Environmental Science & Eamp; Technology, 2020, 54, 8949-8957.	4.6	10
205	Biological Treatment of Photoprocessing Wastewaters. Water Science and Technology, 1994, 29, 89-98.	1.2	10
206	Effect of tetracycline on bio-electrochemically assisted anaerobic methanogenic systems: Process performance, microbial community structure, and functional genes. Science of the Total Environment, 2022, 837, 155756.	3.9	10
207	Anaerobic biodegradation potential of photoprocessing wastewaters. Water Environment Research, 1994, 66, 220-229.	1.3	9
208	Effect of Prestage Hydrothermal Treatment on the Formation of Struvite vs Vivianite during Semicontinuous Anaerobic Digestion of Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2021, 9, 9093-9105.	3.2	9
209	Tandem type PRBs-like technology implanted with targeted functional materials for efficient resourceful treatment of heavy metal ions from mining wastewater. Chemical Engineering Journal, 2021, 420, 130506.	6.6	9
210	Effect of chlorinated alkenes on the reductive dechlorination and methane production processes. Water Science and Technology, 1994, 30, 85-94.	1.2	9
211	Anaerobic co-digestion of municipal sludge with fat-oil-grease (FOG) enhances the destruction of sludge solids. Chemosphere, 2022, 292, 133530.	4.2	9
212	Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions?. Science of the Total Environment, 2022, 833, 155244.	3.9	9
213	Effect of peracetic acid solution on a nitrifying culture: Kinetics, inhibition, cellular and transcriptional responses. Water Research, 2022, 219, 118543.	5.3	9
214	Inhibitory effects of nitrate reduction on methanogenesis in the presence of different electron donors. Water Science and Technology, 2008, 57, 693-698.	1.2	8
215	Influence of sulfate reduction on the microbial dechlorination of pentachloroaniline in a mixed anaerobic culture. Biodegradation, 2010, 21, 43-57.	1.5	8
216	Effect of ultrasound on sodium arsenate induction time and crystallization property during solution crystallization processes. Acoustical Physics, 2014, 60, 356-360.	0.2	8

#	Article	IF	Citations
217	Estimation of environmentally relevant chemical properties of veterinary ionophore antibiotics. Environmental Science and Pollution Research, 2016, 23, 18353-18361.	2.7	8
218	Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect. Industrial & Engineering Chemistry Research, 2017, 56, 2350-2358.	1.8	7
219	Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds. Environmental Science and Pollution Research, 2018, 25, 35981-35989.	2.7	7
220	Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. Environmental Research, 2020, 191, 110212.	3.7	7
221	Anaerobic processes. Water Environment Research, 1996, 68, 479-497.	1.3	6
222	Theoretical investigation of the sequential reductive dechlorination pathways of chlorobenzenes and chloroanilines. Biotechnology and Bioengineering, 2010, 105, 574-587.	1.7	6
223	Influence of quaternary ammonium compounds on the microbial reductive dechlorination of pentachloroaniline. Water Research, 2013, 47, 6780-6789.	5.3	6
224	Anaerobic processes. Water Environment Research, 1994, 66, 342-356.	1.3	5
225	Biotransformation potential of phytosterols under anoxic and anaerobic conditions. Water Science and Technology, 2014, 69, 1661-1668.	1.2	5
226	Stacking Time and Aluminum Sulfate Effects on Polyether Ionophores in Broiler Litter. Journal of Environmental Quality, 2015, 44, 1923-1929.	1.0	5
227	Long-term broiler litter amendments can alter the soil's capacity to sorb monensin. Environmental Science and Pollution Research, 2017, 24, 13466-13473.	2.7	5
228	Synthesis of La ₂ (C ₂ O ₄) ₃ nanoprisms decorated with Fe ₃ O ₄ @m(ZrO ₂ eO ₂) nanospheres and their application for effective fluoride removal. Journal of Chemical Technology and Biotechnology, 2019, 94, 3650-3660.	1.6	5
229	A comparative study on biogas production, energy balance, and nutrients conversion with inter-stage hydrothermal treatment of sewage sludge. Applied Energy, 2021, 288, 116669.	5.1	5
230	Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. Environmental Research, 2022, 211, 113007.	3.7	5
231	Biotransformation of selected monoterpenes under nitrate-reducing conditions. Applied Microbiology and Biotechnology, 1999, 53, 63-68.	1.7	4
232	Application of 1-Alkyl-3-methylimidazolium-Based Ionic Liquids as Background Electrolytes in Nonaqueous Capillary Electrophoresis for the Analysis of Coptidis Alkaloids. Analytical Letters, 2012, 45, 460-472.	1.0	4
233	Alum and Rainfall Effects on Ionophores in Runoff from Surface-Applied Broiler Litter. Journal of Environmental Quality, 2015, 44, 1657-1666.	1.0	4
234	Enhancing nitrogen removal in mature landfill leachate by mixed microalgae through elimination of inhibiting factors. Science of the Total Environment, 2022, 828, 154530.	3.9	4

#	Article	IF	CITATIONS
235	Corncob biocarriers with available carbon release for Chlamydopodium sp. microalgae towards enhanced nitrogen removal from low C/N rare earth element tailings (REEs) wastewater. Chemosphere, 2022, 307, 135673.	4.2	4
236	Influence of Nonionic Surfactants on the Bioavailability of Hexachlorobenzene for Microbial Reductive Dechlorination. ACS Symposium Series, 2002, , 449-466.	0.5	3
237	Effect of temperature on the development of anaerobic cultures from a contaminated subsurface soil. Environmental Technology (United Kingdom), 1991, 12, 679-687.	1.2	2
238	Anaerobic processes. Water Environment Research, 1995, 67, 459-470.	1.3	2
239	Phase Distribution of Hexachlorobenzene in a Suspended-Growth Culture Amended with a Polysorbate Surfactant. Water Environment Research, 2004, 76, 137-148.	1.3	2
240	Biodecolorization of the Azo Dye Reactive Red 2 by a Halotolerant Enrichment Culture. Water Environment Research, 2007, 79, 2446-2456.	1.3	2
241	Effect of Counter Ions and Natural Organic Matter on the Toxicity of Benzalkonium Chloride. Proceedings of the Water Environment Federation, 2009, 2009, 621-631.	0.0	2
242	EFFECT OF TWEEN SURFACTANTS ON METHANOGENESIS AND MICROBIAL REDUCTIVE DECHLORINATION OF HEXACHLOROBENZENE. Environmental Toxicology and Chemistry, 1999, 18, 1408.	2.2	2
243	Anaerobic processes. Water Environment Research, 1997, 69, 500-521.	1.3	1
244	Biotransformation of Nitrosamines and Secondary Amines in a Mixed Methanogenic Culture. Proceedings of the Water Environment Federation, 2009, 2009, 558-567.	0.0	1
245	Fate and Biotransformation of Quaternary Ammonium Compounds in Biological Treatment Processes. Proceedings of the Water Environment Federation, 2010, 2010, 641-641.	0.0	1
246	Long-term evaluation of the effect of peracetic acid solution on anaerobic wastewater treatment: Process performance and microbial community structure. Chemical Engineering Journal, 2022, 436, 135262.	6.6	1
247	ULTRASONIC DECOLORIZATION OF REACTIVE PHTHALOCYANINE DYES. Proceedings of the Water Environment Federation, 2001, 2001, 15-28.	0.0	0
248	REUSE OF TEXTILE REACTIVE AZO DYEBATHS FOLLOWING BIOLOGICAL DECOLORIZATION. Proceedings of the Water Environment Federation, 2001, 2001, 136-157.	0.0	0
249	PHASE DISTRIBUTION OF HEXACHLOROBENZENE IN A SUSPENDED-GROWTH CULTURE AMENDED WITH A POLYSORBATE SURFACTANT. Proceedings of the Water Environment Federation, 2001, 2001, 867-889.	0.0	0
250	REDUCTIVE DECOLORIZATION OF TEXTILE REACTIVE ANTHRAQUINONE DYES UNDER METHANOGENIC CONDITIONS. Proceedings of the Water Environment Federation, 2002, 2002, 144-158.	0.0	0
251	2003 Literature Review. Water Environment Research, 2003, 75, 387-387.	1.3	0
252	Try Before You Buy – Bench-Scale Digestion Evaluation of Potential Co-Digestion Waste Streams. Proceedings of the Water Environment Federation, 2012, 2012, 514-526.	0.0	0

#	Article	IF	CITATIONS
253	Fate and Effect of Naphthenic Acids on Biological Wastewater Treatment Systems in Oil Refineries. Proceedings of the Water Environment Federation, 2012, 2012, 205-214.	0.0	O
254	Try Before You Buy – Bench-Scale Digestion Evaluation of Potential Co-Digestion Waste Streams. Proceedings of the Water Environment Federation, 2012, 2012, 2669-2685.	0.0	0
255	Direct Steam Injection Enhances Gas Production From Algae In Anaerobic Digesters. Proceedings of the Water Environment Federation, 2012, 2012, 2686-2690.	0.0	O
256	Evaluation and optimization of co-digestion capacity through biodegradability test assays. Proceedings of the Water Environment Federation, 2018, 2018, 896-901.	0.0	0
257	Evaluation of the effect of peracetic acid solution on the performance of a continuous-flow biological nitrogen removal (BNR) system. Chemical Engineering Journal, 2022, 431, 133340.	6.6	0