
Sivaraman Chandrasekaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265483/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants. Environmental Pollution, 2021, 270, 116063.	3.7	39
2	Synthesis, characterization and photocatalytic performance of W6+ impregnated g-C3N4 for the removal of chlorophenol derivatives in natural sunlight exposure. Chemosphere, 2021, 265, 129135.	4.2	8
3	Semi-Volatile Organic Compounds in Car Dust: A Pilot Study in Jeddah, Saudi Arabia. International Journal of Environmental Research and Public Health, 2021, 18, 4803.	1.2	5
4	Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. Journal of Hazardous Materials, 2021, 420, 126648.	6.5	59
5	Synthesis of hierarchically structured É ¤ e2O3–PPy nanocomposite as effective adsorbent for cationic dye removal from wastewater. Environmental Pollution, 2020, 267, 115498.	3.7	49
6	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
7	Biodegradation of phenol by a moderately halophilic bacterial consortium. Environmental Progress and Sustainable Energy, 2018, 37, 1587-1593.	1.3	15
8	Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation. Journal of Solid State Chemistry, 2018, 267, 35-52.	1.4	187
9	Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films. Ionics, 2017, 23, 2497-2507.	1.2	23
10	Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. Journal of Hazardous Materials, 2015, 286, 127-135.	6.5	191
11	How the Dyes Are Degraded/Mineralized in a Photocatalytic System? The Possible Role of Auxochromes. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	19
12	Comparison of bacterial diversity from solar salterns and a simulated laboratory study. Annals of Microbiology, 2015, 65, 995-1005.	1.1	4
13	Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril. Marine Pollution Bulletin, 2014, 88, 148-154.	2.3	5
14	The suitability of Ce ³⁺ -modified ZnO photocatalyst for the mineralization of monochlorophenol isomers in sunlight exposure. RSC Advances, 2014, 4, 49347-49359.	1.7	25
15	Enhanced photocatalytic activity of V 2 O 5 –ZnO composites for the mineralization of nitrophenols. Chemosphere, 2014, 117, 115-123.	4.2	74
16	Sunlight assisted photocatalytic mineralization of nitrophenol isomers over W6+ impregnated ZnO. Applied Catalysis B: Environmental, 2014, 160-161, 227-239.	10.8	54
17	Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols. Journal of Hazardous Materials, 2014, 276, 120-128.	6.5	195
18	Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast. Marine Pollution Bulletin, 2013, 76, 276-282.	2.3	66

#	Article	IF	CITATIONS
19	Isolation of hydrocarbonoclastic bacteria from bilge oil contaminated water. International Journal of Environmental Science and Technology, 2011, 8, 461-470.	1.8	24
20	Biodegradation of hydrocarbons in the presence of cyclodextrins. World Journal of Microbiology and Biotechnology, 2010, 26, 227-232.	1.7	19