Dominik Hartl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2265160/publications.pdf

Version: 2024-02-01

95 papers

6,710 citations

71061 41 h-index 79 g-index

96 all docs 96 docs citations

96 times ranked 10965 citing authors

#	Article	IF	CITATIONS
1	Enhanced IgG 1 â€mediated antibody response towards thymusâ€dependent immunization in CXCR1â€deficient mice. Immunity, Inflammation and Disease, 2021, 9, 210-222.	1.3	4
2	Arginase 1 ⁺ ILâ€10 ⁺ polymorphonuclear myeloidâ€derived suppressor cells are elevated in patients with active pemphigus and correlate with an increased Th2/Th1 response. Experimental Dermatology, 2021, 30, 782-791.	1.4	4
3	Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes?. Frontiers in Immunology, 2021, 12, 663203.	2.2	33
4	Myeloid-Derived Suppressor Cells Dampen Airway Inflammation Through Prostaglandin E2 Receptor 4. Frontiers in Immunology, 2021, 12, 695933.	2.2	13
5	Temporal Dynamics of Reactive Oxygen and Nitrogen Species and NF-κB Activation During Acute and Chronic T Cell–Driven Inflammation. Molecular Imaging and Biology, 2020, 22, 504-514.	1.3	8
6	Human monocytic myeloidâ€derived suppressor cells impair Bâ€cell phenotype and function in vitro. European Journal of Immunology, 2020, 50, 33-47.	1.6	26
7	Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications, 2020, 11, 105.	5 . 8	146
8	Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885.	4.6	31
9	Innate Immunity of the Lung: From Basic Mechanisms to Translational Medicine. Journal of Innate Immunity, 2018, 10, 487-501.	1.8	101
10	Macrophages and platelets join forces to release kidney-damaging DNA traps. Nature Medicine, 2018, 24, 128-129.	15.2	2
11	Mechanisms and disease relevance of neutrophil extracellular trap formation. European Journal of Clinical Investigation, 2018, 48, e12919.	1.7	36
12	A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: Preliminary results. European Radiology, 2018, 28, 74-84.	2.3	16
13	Progress in Definition, Prevention and Treatment of Fungal Infections in Cystic Fibrosis. Mycopathologia, 2018, 183, 21-32.	1.3	43
14	Staphylococcal Enterotoxins Dose-Dependently Modulate the Generation of Myeloid-Derived Suppressor Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 321.	1.8	17
15	The fungal ligand chitin directly binds <scp>TLR</scp> 2 and triggers inflammation dependent on oligomer size. EMBO Reports, 2018, 19, .	2.0	75
16	Anti-inflammatory role of CD11b+Ly6G+ neutrophilic cells in allergic airway inflammation in mice. Immunology Letters, 2018, 204, 67-74.	1.1	10
17	Myeloid-Derived Suppressor Cells in Infection: A General Overview. Journal of Innate Immunity, 2018, 10, 407-413.	1.8	76
18	Human T cells modulate myeloid-derived suppressor cells through a TNF-α-mediated mechanism. Immunology Letters, 2018, 202, 31-37.	1.1	8

#	Article	IF	Citations
19	Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulmonary Medicine, 2018, 18, 79.	0.8	43
20	In Vivo Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen Species Generation. Journal of Nuclear Medicine, 2017, 58, 853-860.	2.8	19
21	Myeloid-derived suppressor cells modulate B-cell responses. Immunology Letters, 2017, 188, 108-115.	1.1	59
22	Suspicion of respiratory tract infection with multidrug-resistant Enterobacteriaceae: epidemiology and risk factors from a Paediatric Intensive Care Unit. BMC Infectious Diseases, 2017, 17, 163.	1.3	10
23	An informative intragenic microsatellite marker suggests the IL-1 receptor as a genetic modifier in cystic fibrosis. European Respiratory Journal, 2017, 50, 1700426.	3.1	8
24	Janus-Faced Neutrophil Extracellular Traps in Periodontitis. Frontiers in Immunology, 2017, 8, 1404.	2.2	24
25	Prospective multicenter German study on pulmonary colonization with Scedosporium /Lomentospora species in cystic fibrosis: Epidemiology and new association factors. PLoS ONE, 2017, 12, e0171485.	1.1	47
26	Transcriptomic profile of cystic fibrosis patients identifies type I interferon response and ribosomal stalk proteins as potential modifiers of disease severity. PLoS ONE, 2017, 12, e0183526.	1.1	23
27	Expression of checkpoint molecules on myeloid-derived suppressor cells. Immunology Letters, 2017, 192, 1-6.	1.1	82
28	Myeloid-Derived Suppressor Cells in Bacterial Infections. Frontiers in Cellular and Infection Microbiology, 2016, 6, 37.	1.8	99
29	Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells. Frontiers in Cellular and Infection Microbiology, 2016, 6, 167.	1.8	22
30	Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species. Frontiers in Microbiology, 2016, 7, 1624.	1.5	25
31	CHI3L1 polymorphisms, cord blood YKL-40 levels and later asthma development. BMC Pulmonary Medicine, 2016, 16, 81.	0.8	10
32	mRNA-Mediated Gene Supplementation of Toll-Like Receptors as Treatment Strategy for Asthma In Vivo. PLoS ONE, 2016, 11, e0154001.	1.1	20
33	Is osseointegration inflammation-triggered?. Medical Hypotheses, 2016, 93, 1-4.	0.8	7
34	Microbial colonization and lung function in adolescents with cystic fibrosis. Journal of Cystic Fibrosis, 2016, 15, 340-349.	0.3	63
35	Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. Journal of Allergy and Clinical Immunology, 2016, 138, 1183-1189.e4.	1.5	28
36	Immune Mechanisms in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 309-322.	1.4	245

#	Article	IF	Citations
37	Peripheral blood myeloid-derived suppressor cells reflect disease status in idiopathic pulmonary fibrosis. European Respiratory Journal, 2016, 48, 1171-1183.	3.1	55
38	Differential neutrophil activation in viral infections: Enhanced <scp>TLR</scp> â€7/8â€mediated <scp>CXCL</scp> 8 release in asthma. Respirology, 2016, 21, 172-179.	1.3	42
39	Induction of Myeloid-Derived Suppressor Cells in Cryopyrin-Associated Periodic Syndromes. Journal of Innate Immunity, 2016, 8, 493-506.	1.8	14
40	Update on host-pathogen interactions in cystic fibrosis lung disease. Molecular and Cellular Pediatrics, 2016, 3, 12.	1.0	12
41	Granulocytic Myeloid-Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype. Journal of Immunology, 2016, 196, 1132-1145.	0.4	88
42	Neutrophils in cystic fibrosis. Biological Chemistry, 2016, 397, 485-496.	1.2	64
43	The emerging role of myeloid-derived suppressor cells in lung diseases. European Respiratory Journal, 2016, 47, 967-977.	3.1	46
44	Surfactant proteins in pediatric interstitial lung disease. Pediatric Research, 2016, 79, 34-41.	1.1	23
45	Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight, 2016, 1, e89890.	2.3	141
46	Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	100
47	In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nature Biotechnology, 2015, 33, 584-586.	9.4	113
48	Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells. Cell Host and Microbe, 2015, 17, 507-514.	5.1	99
49	Increased CCL17 serum levels are associated with improved survival in advanced melanoma. Cancer Immunology, Immunotherapy, 2015, 64, 1075-1082.	2.0	16
50	Cystic fibrosis in Europe: patients live longer but are we ready?. European Respiratory Journal, 2015, 46, 11-12.	3.1	11
51	Developmental control of CFTR: from bioinformatics to novel therapeutic approaches. European Respiratory Journal, 2015, 45, 18-20.	3.1	3
52	A functional inflammasome activation assay differentiates patients with pathogenic NLRP3 mutations and symptomatic patients with low penetrance variants. Clinical Immunology, 2015, 157, 56-64.	1.4	32
53	Fungi in Cystic Fibrosis: Recent Findings and Unresolved Questions. Current Fungal Infection Reports, 2015, 9, 1-5.	0.9	8
54	Cystic fibrosis â€" From basic science to clinical benefit: A review series. Journal of Cystic Fibrosis, 2015, 14, 415-416.	0.3	5

#	Article	IF	Citations
55	Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathogens, 2015, 11, e1004651.	2.1	532
56	Regulatory T-Cell Impairment in Cystic Fibrosis Patients with Chronic <i>Pseudomonas</i> Infection. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 914-923.	2.5	77
57	The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Molecular and Cellular Pediatrics, 2015, 2, 3.	1.0	52
58	Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. Journal of Cystic Fibrosis, 2015, 14, 419-430.	0.3	371
59	CXCR4 ⁺ granulocytes reflect fungal cystic fibrosis lung disease. European Respiratory Journal, 2015, 46, 395-404.	3.1	10
60	The Initial Inflammatory Response to Bioactive Implants Is Characterized by NETosis. PLoS ONE, 2015, 10, e0121359.	1,1	25
61	Influenza A(H1N1)pdm09 and Cystic Fibrosis Lung Disease: A Systematic Meta-Analysis. PLoS ONE, 2014, 9, e78583.	1.1	25
62	Airway Mucus Obstruction Triggers Macrophage Activation and Matrix Metalloproteinase 12â€"Dependent Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 709-720.	1.4	76
63	RNA and Imidazoquinolines Are Sensed by Distinct TLR7/8 Ectodomain Sites Resulting in Functionally Disparate Signaling Events. Journal of Immunology, 2014, 192, 5963-5973.	0.4	38
64	The chemokine CCL18 characterises <i>Pseudomonas </i> iinfections in cystic fibrosis lung disease. European Respiratory Journal, 2014, 44, 1608-1615.	3.1	16
65	Current concepts: host-pathogen interactions in cystic fibrosis airways disease. European Respiratory Review, 2014, 23, 320-332.	3.0	55
66	JCF — 2014 and beyond. Journal of Cystic Fibrosis, 2014, 13, 610-611.	0.3	0
67	CFTR: cystic fibrosis and beyond. European Respiratory Journal, 2014, 44, 1042-1054.	3.1	207
68	Airway, but not serum or urinary, levels of YKL-40 reflect inflammation in early cystic fibrosis lung disease. BMC Pulmonary Medicine, 2014, 14, 28.	0.8	25
69	Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting?. European Respiratory Journal, 2014, 44, 17-19.	3.1	35
70	Characterization of rapid neutrophil extracellular trap formation and its cooperation with phagocytosis in human neutrophils. Discoveries, 2014, 2, e19.	1.5	18
71	Inhalation Treatment with Glutathione in Patients with Cystic Fibrosis. A Randomized Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 83-89.	2.5	73
72	Flagellin Induces Myeloid-Derived Suppressor Cells: Implications for <i>Pseudomonas aeruginosa</i> Infection in Cystic Fibrosis Lung Disease. Journal of Immunology, 2013, 190, 1276-1284.	0.4	118

#	Article	IF	CITATIONS
73	Expression and Regulation of Interferon-Related Development Regulator–1 in Cystic Fibrosis Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 71-77.	1.4	12
74	Immune Response, Diagnosis and Treatment of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis Lung Disease. Current Pharmaceutical Design, 2013, 19, 3669-3678.	0.9	20
75	<i>CXCR1</i> and <i>CXCR2</i> haplotypes synergistically modulate cystic fibrosis lung disease. European Respiratory Journal, 2012, 39, 1385-1390.	3.1	27
76	Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. Journal of Cystic Fibrosis, 2012, 11, 84-92.	0.3	199
77	Role of Breast Regression Protein–39 in the Pathogenesis of Cigarette Smoke–Induced Inflammation and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 777-786.	1.4	67
78	The Chitinase-Like Protein YKL-40 Modulates Cystic Fibrosis Lung Disease. PLoS ONE, 2011, 6, e24399.	1.1	44
79	Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13–induced tissue responses and apoptosis. Journal of Experimental Medicine, 2009, 206, 1149-1166.	4.2	376
80	Acidic Mammalian Chitinase Regulates Epithelial Cell Apoptosis via a Chitinolytic-Independent Mechanism. Journal of Immunology, 2009, 182, 5098-5106.	0.4	43
81	Allergic bronchopulmonary aspergillosis: the hunt for a diagnostic serological marker in cystic fibrosis patients. Expert Review of Molecular Diagnostics, 2009, 9, 157-164.	1.5	14
82	Immunological mechanisms behind the cystic fibrosis-ABPA link. Medical Mycology, 2009, 47, S183-S191.	0.3	28
83	Novel biomarkers in asthma: chemokines and chitinase-like proteins. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 60-66.	1.1	54
84	Chitin regulation of immune responses: an old molecule with new roles. Current Opinion in Immunology, 2008, 20, 684-689.	2.4	315
85	Acidic Mammalian Chitinase Is Secreted via an ADAM17/Epidermal Growth Factor Receptor-dependent Pathway and Stimulates Chemokine Production by Pulmonary Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 33472-33482.	1.6	37
86	TLR Expression on Neutrophils at the Pulmonary Site of Infection: TLR1/TLR2-Mediated Up-Regulation of TLR5 Expression in Cystic Fibrosis Lung Disease. Journal of Immunology, 2008, 181, 2753-2763.	0.4	86
87	Infiltrated Neutrophils Acquire Novel Chemokine Receptor Expression and Chemokine Responsiveness in Chronic Inflammatory Lung Diseases. Journal of Immunology, 2008, 181, 8053-8067.	0.4	199
88	Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells inÂpediatric asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 1258-1266.	1,5	366
89	Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nature Medicine, 2007, 13, 1423-1430.	15.2	291
90	Recurrent pericarditis in children: elevated cardiac autoantibodies. Clinical Research in Cardiology, 2007, 96, 168-175.	1.5	18

DOMINIK HARTL

#	Article	IF	CITATIONS
91	Pulmonary TH2 response in Pseudomonas aeruginosa–infected patients with cystic fibrosis. Journal of Allergy and Clinical Immunology, 2006, 117, 204-211.	1.5	172
92	Chemokines Indicate Allergic Bronchopulmonary Aspergillosis in Patients with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1370-1376.	2.5	83
93	Chemokines in Allergic Aspergillosis - From Animal Models to Human Lung Diseases. Inflammation and Allergy: Drug Targets, 2006, 5, 219-228.	1.8	36
94	A role for MCP-1/CCR2 in interstitial lung disease in children. Respiratory Research, 2005, 6, 93.	1.4	44
95	Pulmonary chemokines and their receptors differentiate children with asthma and chronic cough. Journal of Allergy and Clinical Immunology, 2005, 115, 728-736.	1.5	70