Stefan Lochbrunner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2264981/publications.pdf

Version: 2024-02-01

195 papers 7,625 citations

44042 48 h-index 58549 82 g-index

218 all docs

218 docs citations

times ranked

218

7590 citing authors

#	Article	IF	CITATIONS
1	Development and application of redox-active cyclometallating ligands based on W(<scp>ii</scp>) alkyne complexes. Dalton Transactions, 2022, 51, 852-856.	1.6	O
2	A Photoreactive Iron(II) Complex Luminophore. Journal of the American Chemical Society, 2022, 144, 1169-1173.	6.6	51
3	The effect of intermolecular electronic coupling on the exciton dynamics in perylene red nanoparticles. Physical Chemistry Chemical Physics, 2022, 24, 8695-8704.	1.3	2
4	Benzothiazol picolin/isonicotinamides molecular switches: Expectations and reality. Journal of Molecular Liquids, 2022, 356, 118968.	2.3	5
5	Comprehensive Picture of the Excited State Dynamics of Cu(I)- and Ru(II)-Based Photosensitizers with Long-Lived Triplet States. Inorganic Chemistry, 2022, 61, 214-226.	1.9	15
6	Higher MLCT lifetime of carbene iron(<scp>ii</scp>) complexes by chelate ring expansion. Chemical Communications, 2021, 57, 7541-7544.	2.2	24
7	Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(<scp>iii</scp>) complex I: synthesis, spectroscopy and static quantum chemistry. Chemical Science, 2021, 12, 10780-10790.	3.7	28
8	Fluence-dependent dynamics of localized excited species in monolayer versus bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> . Physical Review B, 2021, 103, .	1.1	8
9	Photoisomerization of a phosphorus-based biradicaloid: ultrafast dynamics through a conical	1.3	5
10	Distinct photodynamics of \hat{l}^2 -N and \hat{l}^2 -C pseudoisomeric iron($\langle scp \rangle ii \langle scp \rangle$) complexes. Chemical Communications, 2021, 57, 6640-6643.	2.2	23
11	Siteâ€Selective Realâ€Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using Lâ€Edge Xâ€Ray Absorption Spectroscopy**. ChemPhysChem, 2021, 22, 693-700.	1.0	5
12	High-Performance Room-Light-Driven \hat{l}^2 -AgVO3/mpg-C3N4 Core/Shell Photocatalyst Prepared by Mechanochemical Method. Advances in Chemical Engineering and Science, 2021, 11, 290-315.	0.2	3
13	Exciton Migration in Multistranded Perylene Bisimide J-Aggregates. Journal of Physical Chemistry Letters, 2020, 11, 6612-6617.	2.1	20
14	Ground- and Excited-State Properties of Iron(II) Complexes Linked to Organic Chromophores. Inorganic Chemistry, 2020, 59, 14746-14761.	1.9	28
15	When Donors Turn into Acceptors: Ground and Excited State Properties of Fe ^{II} Complexes with Amine-Substituted Tridentate Bis-imidazole-2-ylidene Pyridine Ligands. Inorganic Chemistry, 2020, 59, 8762-8774.	1.9	18
16	Chercher de l'eau: The switching mechanism of the rotary switch ethyl-2-(2-(quinolin-8-yl)hydrazono)-2-(pyridin-2-yl)acetate. Computational Materials Science, 2020, 177, 109570.	1.4	8
17	Greenâ€Light Activation of Push–Pull Ruthenium(II) Complexes. Chemistry - A European Journal, 2020, 26, 6820-6832.	1.7	15
18	Revealing the initial steps in homogeneous photocatalysis by time-resolved spectroscopy. Journal of Physics Condensed Matter, 2020, 32, 153001.	0.7	13

#	Article	IF	CITATIONS
19	A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution. Journal of the American Chemical Society, 2020, 142, 7947-7955.	6.6	74
20	Ultrafast Dynamics of Singlet Excitons in Perylene Derivative Nanoparticles., 2020,,.		0
21	Ultrafast Dynamics of Photosensitizers based on Fe(II)., 2020,,.		0
22	Switch of dimensionality of exciton diffusion in aggregates. EPJ Web of Conferences, 2019, 205, 06015.	0.1	0
23	Excitedâ€State Kinetics of an Airâ€Stable Cyclometalated Iron(II) Complex. Chemistry - A European Journal, 2019, 25, 11826-11830.	1.7	36
24	Photodynamics of Fe complexes: Variation with number of NHC functions. EPJ Web of Conferences, 2019, 205, 04010.	0.1	0
25	Exciton Dynamics and Self-Trapping of Carbocyanine J-Aggregates in Polymer Films. Journal of Physical Chemistry C, 2019, 123, 9428-9444.	1.5	23
26	Gold(II) Porphyrins in Photoinduced Electron Transfer Reactions. Chemistry - A European Journal, 2019, 25, 5940-5949.	1.7	20
27	A chemical reaction controlled by light-activated molecular switches based on hetero-cyclopentanediyls. Chemical Science, 2019, 10, 3486-3493.	3.7	22
28	Light-driven proton reduction with in situ supported copper nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 31892-31901.	3.8	0
29	Selective Earth-Abundant System for CO ₂ Reduction: Comparing Photo- and Electrocatalytic Processes. ACS Catalysis, 2019, 9, 2091-2100.	5. 5	80
30	Thermally activated delayed fluorescence (TADF) dyes as efficient organic photosensitizers for photocatalytic water reduction. Catalysis Communications, 2019, 119, 11-15.	1.6	18
31	Ultrafast Energy Transfer in Dinuclear Complexes with Bridging 1,10-Phenanthroline-5,6-Dithiolate. Inorganic Chemistry, 2018, 57, 4849-4863.	1.9	10
32	A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto- $5\hat{a}$ \in 2-nucleotidase inhibitory effects. Organic and Biomolecular Chemistry, 2018, 16, 717-732.	1.5	28
33	The Connection between NHC Ligand Count and Photophysical Properties in Fe(II) Photosensitizers: An Experimental Study. Inorganic Chemistry, 2018, 57, 360-373.	1.9	72
34	Effective quenching and excited-state relaxation of a Cu(I) photosensitizer addressed by time-resolved spectroscopy and TDDFT calculations. Chemical Physics, 2018, 515, 557-563.	0.9	9
35	Synthesis of furo[3,2- <i>b</i> :4,5- <i>b</i> ꀲ]diindoles and their optical and electrochemical properties. Organic and Biomolecular Chemistry, 2018, 16, 6543-6551.	1.5	7
36	Rareâ€Earth Metal Tetracyanidoborate Hydrate Salts: Structural, Spectral, and Thermal Properties as well as the Luminescence of Dehydrated Salts. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1495-1502.	0.6	4

#	Article	IF	CITATIONS
37	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	1.6	57
38	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	7.2	261
39	Palladiumâ€Catalyzed Synthesis and Fluorescence Study of Ethynylated Naphthalene Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2238-2244.	1.2	3
40	Solvent control of intramolecular proton transfer: is 4-hydroxy-3-(piperidin-1-ylmethyl)-1-naphthaldehyde a proton crane?. Physical Chemistry Chemical Physics, 2017, 19, 7316-7325.	1.3	14
41	Palladium-catalyzed synthesis and fluorescence study of 2,3-diaryl-5-ethynylbenzo[e]indoles. Tetrahedron, 2017, 73, 3407-3414.	1.0	2
42	Photoâ€Chromium: Sensitizer for Visibleâ€Lightâ€Induced Oxidative Câ^'H Bond Functionalizationâ€"Electron or Energy Transfer?. ChemPhotoChem, 2017, 1, 344-349.	1.5	78
43	Large Stokes Shift Ionic‣iquid Dye. Angewandte Chemie - International Edition, 2017, 56, 8564-8567.	7.2	11
44	Domino Reactions of Chromoneâ€3â€carboxylic Acids with Aminoheterocycles: Synthesis of Heteroannulated Pyrido[2,3â€ <i>c</i>)coumarins and their Optical and Biological Activity. European Journal of Organic Chemistry, 2017, 2017, 7148-7159.	1.2	16
45	Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo[h]quinolines. Physical Chemistry Chemical Physics, 2017, 19, 26621-26629.	1.3	23
46	Low temperature exciton dynamics and structural changes in perylene bisimide aggregates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 184005.	0.6	14
47	Recombination dynamics of optically excited charge carriers in bulk MoS ₂ . Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 194003.	0.6	7
48	Photo-Chromium: Sensitizer for Visible-Light-Induced Oxidative Câ ⁻ 'H Bond Functionalization-Electron or Energy Transfer?. ChemPhotoChem, 2017, 1, 342-343.	1.5	0
49	Heteroleptic Copper Photosensitizers: Why an Extended Ï€â€System Does Not Automatically Lead to Enhanced Hydrogen Production. Chemistry - A European Journal, 2017, 23, 312-319.	1.7	91
50	Chemical Tuning and Absorption Properties of Iridium Photosensitizers for Photocatalytic Applications. Inorganics, 2017, 5, 23.	1.2	10
51	Light to Hydrogen: Photocatalytic Hydrogen Generation from Water with Molecularly-Defined Iron Complexes. Inorganics, 2017, 5, 14.	1.2	33
52	Efficient Photocatalytic Water Reduction Using Inâ€Situ Generated Knölker's Iron Complexes. ChemCatChem, 2016, 8, 2340-2344.	1.8	21
53	Mapping Long-Lived Dark States in Copper Porphyrin Nanostructures. Journal of Physical Chemistry C, 2016, 120, 16977-16984. Rareâ€Earth Tetracyanidoborate Salts – Structural Features and Properties Including Luminescence of	1.5	5
54	[<i>RE</i> Â(H ₂ O) ₈][B(CN) ₄] ₃ Â. <i>n</i> hh2O and [<i>RE</i> hh(H ₂ O) ₇ {κ ¹ <i>N</i> hê B(CN) ₄ }][B(CN) ₄ 4}][B(CN) ₄ }][B(CN) <su< td=""><td>/sub>]<su< td=""><td>b>¹²</td></su<></td></su<>	/sub>] <su< td=""><td>b>¹²</td></su<>	b> ¹²

#	Article	IF	CITATIONS
55	Biphasic aggregation of a perylene bisimide dye identified by exciton-vibrational spectra. Physical Chemistry Chemical Physics, 2016, 18, 25110-25119.	1.3	8
56	Ultrafast excited state dynamics of iridium(<scp>iii</scp>) complexes and their changes upon immobilisation onto titanium dioxide layers. Physical Chemistry Chemical Physics, 2016, 18, 10682-10687.	1.3	29
57	Anti-cooperative supramolecular polymerization: a new K ₂ –K model applied to the self-assembly of perylene bisimide dye proceeding via well-defined hydrogen-bonded dimers. Chemical Science, 2016, 7, 1729-1737.	3.7	84
58	Straightforward synthesis of tetraalkynylpyrazines and their photophysical properties. Organic and Biomolecular Chemistry, 2016, 14, 1442-1449.	1.5	14
59	Pd(0)-catalyzed domino C–N coupling/hydroamination/C–H arylation reactions: efficient synthesis and photophysical properties of azaindolo[1,2-f]phenanthridines. Organic and Biomolecular Chemistry, 2016, 14, 1293-1301.	1.5	9
60	Coherent Diffractive Imaging of Laser-Driven Plasma Dynamics in Thin Foils., 2016,,.		0
61	Ultrafast Charge Carrier Dynamics in Bulk MoS2 Following Optical Excitation. , 2016, , .		O
62	Graphene: Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 7992-7992.	11.1	3
63	Exciton-exciton annihilation in a disordered molecular system by direct and multistep \tilde{FA} rster transfer. Physical Review B, 2015, 92, .	1.1	37
64	Vibrational Dephasing in Ionic Liquids as a Signature of Hydrogen Bonding. ChemPhysChem, 2015, 16, 2519-2523.	1.0	13
65	Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides. Advanced Materials, 2015, 27, 7993-7999.	11.1	153
66	Laser-Induced Plasma Dynamics Imaged by Femtosecond In-Line Holography. Springer Proceedings in Physics, 2015, , 345-347.	0.1	0
67	Synthesis and Properties of 5,7â€Dihydropyrido[3,2â€ <i>b</i> :5,6â€ <i>b′</i>]diindoles. European Journal of Organic Chemistry, 2015, 2015, 1007-1019.	1.2	22
68	Syntheses, Structures, and Luminescence Properties of New Octahedral Cluster Complexes with Terminal Phenolate Ligands: [K(H2O)(CH3OH)3]2[Ph4P]2[M 6Cl12(O–C6H4–F)6] (MÂ=ÂNb, Ta; PhÂ=Âpher Journal of Cluster Science, 2015, 26, 223-232.	nyl)7	3
69	4-Hydroxy-1-naphthaldehydes: proton transfer or deprotonation. Physical Chemistry Chemical Physics, 2015, 17, 10238-10249.	1.3	19
70	Synthesis of tetraaryl- and tetraalkenylpyrazines by Suzuki–Miyaura reactions of tetrachloropyrazine. Tetrahedron, 2015, 71, 6803-6812.	1.0	14
71	Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides. Microporous and Mesoporous Materials, 2015, 211, 182-191.	2.2	30
72	Novel synthesis of 5-methyl-5,10-dihydroindolo[3,2-b]indoles by Pd-catalyzed C–C and two-fold C–N coupling reactions. Organic and Biomolecular Chemistry, 2015, 13, 583-591.	1.5	32

#	Article	IF	CITATIONS
73	S2 to S1 Relaxation Dynamics in Perylene Bisimide Dye Aggregates and Monomers. Springer Proceedings in Physics, 2015, , 459-461.	0.1	O
74	Substitutionâ€Controlled Excited State Processes in Heteroleptic Copper(I) Photosensitizers Used in Hydrogen Evolving Systems. ChemPhysChem, 2014, 15, 3709-3713.	1.0	61
75	S2 to S1 Relaxation Dynamics in Perylene Bisimide Dye Aggregates and Monomers. , 2014, , .		0
76	Analyzing ultrafast multiplex coherent antiâ€Stokes Raman spectra with picosecond probing. Journal of Raman Spectroscopy, 2014, 45, 359-368.	1.2	7
77	Improving the Time Resolution for Remote Control of Enzyme Activity by a Nanosecond Laserâ€Induced pH Jump. ChemCatChem, 2014, 6, 3511-3517.	1.8	5
78	Photocatalytic Hydrogen Production with Copper Photosensitizer–Titanium Dioxide Composites. ChemCatChem, 2014, 6, 82-86.	1.8	53
79	Spin density distribution after electron transfer from triethylamine to an [lr(ppy)2(bpy)]+ photosensitizer during photocatalytic water reduction. Physical Chemistry Chemical Physics, 2014, 16, 4789.	1.3	40
80	Direct observation of the cyclic dimer in liquid acetic acid by probing the Cî€O vibration with ultrafast coherent Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 18010-18016.	1.3	11
81	Dinuclear Ru/Ni, Ir/Ni, and Ir/Pt Complexes with Bridging Phenanthroline-5,6-dithiolate: Synthesis, Structure, and Electrochemical and Photophysical Behavior. Inorganic Chemistry, 2014, 53, 8859-8873.	1.9	14
82	Theoretical Analysis of the Relaxation Dynamics in Perylene Bisimide Dimers Excited by Femtosecond Laser Pulses. Journal of Physical Chemistry A, 2014, 118, 1403-1412.	1.1	36
83	Synthesis of fluorescent 2,3,5,6-tetraalkynylpyridines by site-selective Sonogashira-reactions of 2,3,5,6-tetrachloropyridines. Organic and Biomolecular Chemistry, 2014, 12, 8627-8640.	1.5	10
84	Site Selective Synthesis of Pentaarylpyridines <i>via</i> Multiple Suzuki–Miyaura Cross oupling Reactions. Advanced Synthesis and Catalysis, 2014, 356, 1987-2008.	2.1	34
85	Palladium catalyzed synthesis and physical properties of indolo[2,3-b]quinoxalines. Organic and Biomolecular Chemistry, 2014, 12, 6151-6166.	1.5	37
86	Death and Rebirth: Photocatalytic Hydrogen Production by a Self-Organizing Copper–Iron System. ACS Catalysis, 2014, 4, 1845-1849.	5 . 5	89
87	Electron- and Energy-Transfer Processes in a Photocatalytic System Based on an Ir(III)-Photosensitizer and an Iron Catalyst. Journal of Physical Chemistry Letters, 2014, 5, 1355-1360.	2.1	44
88	Structure–Activity Relationships in Bulk Polymeric and Sol–Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chemistry of Materials, 2014, 26, 1727-1733.	3.2	108
89	On the interpretation of decay associated spectra in the presence of time dependent spectral shifts. Chemical Physics Letters, 2014, 609, 184-188.	1.2	33
90	Structural Motives of Acetic Acid from Ultrafast CARS Spectroscopy of the CO Vibration. , 2014, , .		O

#	Article	IF	CITATIONS
91	Laser-Induced Plasma Dynamics Imaged by Femtosecond In-Line Holography. , 2014, , .		O
92	A Nobleâ€Metalâ€Free System for Photocatalytic Hydrogen Production from Water. Chemistry - A European Journal, 2013, 19, 15972-15978.	1.7	155
93	Biphasic Self-Assembly Pathways and Size-Dependent Photophysical Properties of Perylene Bisimide Dye Aggregates. Journal of the American Chemical Society, 2013, 135, 18722-18725.	6.6	113
94	Focus on correlation effects in radiation fields. New Journal of Physics, 2013, 15, 065015.	1.2	5
95	Photocatalytic Water Reduction with Copperâ€Based Photosensitizers: A Nobleâ€Metalâ€Free System. Angewandte Chemie - International Edition, 2013, 52, 419-423.	7.2	243
96	Ultrafast Exciton Self-Trapping upon Geometry Deformation in Perylene-Based Molecular Aggregates. Journal of Physical Chemistry Letters, 2013, 4, 792-796.	2.1	123
97	Tetraalkynylated and Tetraalkenylated Benzenes and Pyridines: Synthesis and Photophysical Properties. Advanced Synthesis and Catalysis, 2013, 355, 1849-1858.	2.1	30
98	Photoswitching of Enzyme Activity by Laser-Induced pH-Jump. Journal of the American Chemical Society, 2013, 135, 9407-9411.	6.6	84
99	Suzuki-Miyaura Reactions of 2,7-Dichloro-1,8-naphthyridine. Synlett, 2013, 24, 359-362.	1.0	3
100	Observation of Two-Exciton States in Perylene Bisimide Aggregates. EPJ Web of Conferences, 2013, 41, 05035.	0.1	0
101	Ultrafast CARS with Improved Spectral Resolution. EPJ Web of Conferences, 2013, 41, 05007.	0.1	0
102	Coherent anti-Stokes Raman scattering with broadband excitation and narrowband probe. Optics Express, 2012, 20, 6478.	1.7	19
103	Photoexcitation dynamics in polyfluorene-based thin films: Energy transfer and amplified spontaneous emission. Physical Review B, 2012, 85, .	1.1	15
104	Material Processing with Femtosecond Laser Pulses for Medical Applications. Biomedizinische Technik, 2012, 57, .	0.9	2
105	Loading method for discrete drug depots on implant surfaces. Biomedizinische Technik, 2012, 57, .	0.9	2
106	Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy. New Journal of Physics, 2012, 14, 105026.	1.2	102
107	Size-dependent exciton dynamics in one-dimensional perylene bisimide aggregates. New Journal of Physics, 2012, 14, 105027.	1.2	30
108	Material processing with shaped femtosecond laser pulses. Biomedizinische Technik, 2012, 57, .	0.9	1

#	Article	IF	Citations
109	Förster-mediated spectral diffusion in disordered organic materials. Physical Review B, 2012, 85, .	1.1	22
110	Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water. Chemistry - A European Journal, 2012, 18, 3220-3225.	1.7	90
111	Photophysical and quantum chemical study on a J-aggregate forming perylene bisimide monomer. Physical Chemistry Chemical Physics, 2011, 13, 17649.	1.3	42
112	Multiple Sonogashira Reactions of Polychlorinated Molecules. Synthesis and Photophysical Properties of the First Pentaalkynylpyridines. Organic Letters, 2011, 13, 1618-1621.	2.4	34
113	Long distance energy transfer in a polymer matrix doped with a perylene dye. Physical Chemistry Chemical Physics, 2011, 13, 3527.	1.3	29
114	One-Dimensional Exciton Diffusion in Perylene Bisimide Aggregates. Journal of Physical Chemistry A, 2011, 115, 648-654.	1.1	149
115	Quantum Dynamics and Spectroscopy of Excitons in Molecular Aggregates. Semiconductors and Semimetals, 2011, 85, 47-81.	0.4	24
116	The origin of ultrafast proton transfer: Multidimensional wave packet motion vs. tunneling. Chemical Physics Letters, 2011, 503, 61-65.	1.2	58
117	Influence of core-substitution on the ultrafast charge separation and recombination in arylamino core-substituted naphthalene diimides. Chemical Physics Letters, 2011, 504, 24-28.	1.2	15
118	Einfluss ultrakurzer Laserpulse auf die Hydrolyseaktivitäsaurer Phosphatasen. Chemie-Ingenieur-Technik, 2010, 82, 1538-1538.	0.4	0
119	The Ultrafast Dynamics of Electronic Excitations in Pentacene Thin Films. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	1
120	Variation of the Ultrafast Fluorescence Quenching in 2,6-Sulfanyl-Core-Substituted Naphthalenediimides by Electron Transfer. Journal of Physical Chemistry A, 2010, 114, 12555-12560.	1.1	16
121	One Dimensional Exciton Diffusion in J-Aggregates. , 2010, , .		0
122	Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Physical Review B, 2009, 79,	1.1	110
123	Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl)benzothiazole: a case study for excited-state intramolecular proton transfer systems. Physical Chemistry Chemical Physics, 2009, 11, 1406.	1.3	174
124	Influence of the Environment on Reaction Dynamics: Excited State Intramolecular Proton Transfer in the Gas Phase and in Solution. Springer Series in Chemical Physics, 2009, , 508-510.	0.2	2
125	Electronic Excitations in Pentacene Films: Singlet versus Triplet Dynamics. Springer Series in Chemical Physics, 2009, , 376-378.	0.2	0
126	The interplay of skeletal deformations and ultrafast excited-state intramolecular proton transfer: Experimental and theoretical investigation of 10-hydroxybenzo[h]quinoline. Chemical Physics, 2008, 347, 446-461.	0.9	91

#	Article	IF	CITATIONS
127	Reaction path dependent coherent wavepacket dynamics in excited state intramolecular double proton transfer. Chemical Physics, 2008, 349, 197-203.	0.9	30
128	The Key Role of Solvation Dynamics in Intramolecular Electron Transfer: Time-Resolved Photophysics of Crystal Violet Lactone. Journal of Physical Chemistry A, 2008, 112, 8487-8496.	1.1	24
129	Exciton Trapping in π-Conjugated Materials: A Quantum-Chemistry-Based Protocol Applied to Perylene Bisimide Dye Aggregates. Journal of the American Chemical Society, 2008, 130, 12858-12859.	6.6	290
130	Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system. Optics Letters, 2008, 33, 192.	1.7	75
131	Symmetry-dependent solvation of donor-substituted triarylboranes. Physical Chemistry Chemical Physics, 2008, 10, 6245.	1.3	48
132	Ultrasensitive ultraviolet-visible 20fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Review of Scientific Instruments, 2008, 79, 013107.	0.6	59
133	Ultrafast Exciton Decay in Microcrystalline Pentacene Films. , 2007, , .		0
134	Tunable 20 fs red pulses with up to 200 nJ energy from a 2 MHz Yb-doped fiber oscillator/amplifier system., 2007,,.		0
135	Tunable pulses from below 300 to 950 nm with durations down to 12 fs from a 2 MHz Yb-doped fiber system. , 2007, , .		0
136	Sub-100 fs Electron and Proton Transfer: the Role of the Environment. , 2007, , .		0
137	30-fs ultra sensitive absorption spectroscopy of low vapor pressure molecules: proton transfer in the gas phas. , 2007, , .		0
138	Noncollinear optical parametric amplification of cw light, continua and vacuum fluctuations. , 2007, ,		0
139	Ultrafast Exciton Relaxation in Microcrystalline Pentacene Films. Physical Review Letters, 2007, 99, 176402.	2.9	121
140	Electron Transfer in Triarylmethane Lactones: From the sub-100 fs Regime to Solvent Control. Springer Series in Chemical Physics, 2007, , 309-311.	0.2	0
141	Search for Pure Vibrational Dephasing of Electronically Excited Dye Molecules in Solution., 2007,,.		0
142	Shaped UV Pulses with 20 fs Substructures. Springer Series in Chemical Physics, 2007, , 145-147.	0.2	0
143	Naphthalene Bisimides on the Way to Opto-electronic Devices., 2007,,.		0
144	Energy Transport Mechanisms in Doped Organic Films. Springer Series in Chemical Physics, 2007, , 306-308.	0.2	0

#	Article	IF	CITATIONS
145	Exciton Migration by Ultrafast Förster Transfer in Highly Doped Matrixes. Journal of Physical Chemistry B, 2006, 110, 6001-6009.	1.2	43
146	19 fs shaped ultraviolet pulses. Optics Letters, 2006, 31, 543.	1.7	31
147	Energy Transport Mechanisms in Doped Organic Films. , 2006, , ThE8.		0
148	Intramolecular electron transfer beyond solvent control. , 2006, , 415-419.		0
149	Shaped UV Pulses with 20 fs Substructures. , 2006, , .		0
150	Electronic Structure and Dynamics in Thin, Ordered Pentacene Films. , 2006, , .		0
151	Electron Transfer in Triarylmethane Lactones: From the sub-100 fs Regime to Solvent Control. , 2006, ,		0
152	Full characterization of ultraviolet and visible 10-fs pulses with zero-additional-phase SPIDER. Springer Series in Chemical Physics, 2005, , 130-132.	0.2	0
153	Achromatic second harmonic generation: tunable ultraviolet pulses with sub-10 fs duration. Springer Series in Chemical Physics, 2005, , 79-81.	0.2	0
154	Ultrafast proton transfer of 1-hydroxy-2-acetonaphthone: Reaction path from resonance Raman and transient absorption studies. Journal of Chemical Physics, 2005, 122, 244315.	1.2	62
155	Femtosecond transient spectroscopy of the photoionization of indole in water., 2004,, 229-232.		2
156	Symmetry breaking wavepacket motion and absence of deuterium isotope effect in ultrafast excited state proton transfer., 2004, , 193-196.		4
157	Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses. Review of Scientific Instruments, 2004, 75, 2323-2327.	0.6	35
158	Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management. Applied Physics B: Lasers and Optics, 2004, 79, 1027-1032.	1.1	94
159	Direct observation of the nuclear motion during ultrafast intramolecular proton transfer. Journal of Molecular Structure, 2004, 700, 13-18.	1.8	66
160	Real time observation of the photo-Fries rearrangement. Journal of Chemical Physics, 2004, 120, 11634-11639.	1.2	33
161	50-fs Photoinduced Intramolecular Charge Separation in Triphenylmethane Lactones. Journal of Physical Chemistry A, 2004, 108, 10763-10769.	1.1	25
162	Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses. Optics Letters, 2004, 29, 210.	1.7	98

#	Article	IF	CITATIONS
163	Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Optics Letters, 2004, 29, 1686.	1.7	156
164	Mechanism and Dynamics of Azobenzene Photoisomerization. Journal of the American Chemical Society, 2003, 125, 8098-8099.	6.6	296
165	Carrier-envelope phase fluctuations of amplified femtosecond pulses: characterization with a simple spatial interference setup. Applied Physics B: Lasers and Optics, 2003, 77, 129-132.	1.1	7
166	Microscopic Mechanism of Ultrafast Excited-State Intramolecular Proton Transfer: A 30-fs Study of 2-(2â€⁻-Hydroxyphenyl)benzothiazoleâ€. Journal of Physical Chemistry A, 2003, 107, 10580-10590.	1.1	212
167	Phase-coherent generation of tunable visible femtosecond pulses. Optics Letters, 2003, 28, 185.	1.7	39
168	Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing. Optics Express, 2003, 11, 3110.	1.7	64
169	Real-time characterization and optimal phase control of tunable visible pulses with a flexible compressor. Applied Physics B: Lasers and Optics, 2002, 74, s219-s224.	1.1	35
170	Proton transfer and internal conversion of o-hydroxybenzaldehyde: coherent versus statistical excited-state dynamics. Chemical Physics Letters, 2002, 354, 409-416.	1.2	68
171	ULTRAFAST EXCITED STATE PROTON TRANSFER: REACTIVE DYNAMICS BY MULTIDIMENSIONAL WAVEPACKET MOTION., 2002, , .		5
172	Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy. Journal of Chemical Physics, 2001, 114, 2519-2522.	1.2	147
173	Femtosecond charge transfer dynamics in artificial donor/acceptor systems: switching from adiabatic to nonadiabatic regimes by small structural changes. Chemical Physics Letters, 2001, 345, 81-88.	1.2	33
174	Electronic continua in time-resolved photoelectron spectroscopy. II. Corresponding ionization correlations. Journal of Chemical Physics, 2001, 114, 1206-1213.	1.2	64
175	Crosscorrelation measurements of ultrashort visible pulses: comparison between nonlinear crystals and SiC photodiodes. Optics Communications, 2000, 184, 321-328.	1.0	14
176	Methods and applications of femtosecond time-resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 183-198.	0.8	63
177	Generation of 10 to 50Âfs pulses tunable through all of the visible and the NIR. Applied Physics B: Lasers and Optics, 2000, 71, 457-465.	1.1	305
178	Highly localized vibronic wavepackets in large reactive molecules. Applied Physics B: Lasers and Optics, 2000, 71, 405-409.	1.1	33
179	Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2′-hydroxyphenyl)benzothiazole. Journal of Chemical Physics, 2000, 112, 10699-10702.	1.2	191
180	Towards disentangling coupled electronic–vibrational dynamics in ultrafast non-adiabatic processes. Faraday Discussions, 2000, 115, 33-48.	1.6	37

#	Article	IF	CITATIONS
181	Pathway approach to ultrafast photochemistry: potential surfaces, conical intersections and isomerizations of small polyenes. Chemical Physics, 1998, 232, 161-174.	0.9	126
182	Low-Temperature Photochemistry of Previtamin D: A Hula-Twist Isomerization of a Triene. Angewandte Chemie - International Edition, 1998, 37, 505-507.	7.2	89
183	Electronic Relaxation and Ground-State Dynamics of 1,3-Cyclohexadiene andcis-Hexatriene in Ethanol. Journal of Physical Chemistry A, 1998, 102, 9334-9344.	1.1	78
184	Tunable Visible and NIR Parametric Amplifiers at 1 kHz and Pulse Lengths Down to 10 fs. Springer Series in Chemical Physics, 1998, , 57-59.	0.2	2
185	Ultrafast photochemical pericyclic reactions and isomerizations of small polyenes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 500-509.	0.9	29
186	The wavelength dependence of the photochemistry of previtamin D. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 105, 159-164.	2.0	25
187	The sub-ps lifetime of the 2A state of Z-hexatriene as deduced from its transient absorption spectrum. Chemical Physics Letters, 1997, 274, 491-498.	1.2	18
188	New Dunham coefficients of the A 1 Σ + -State of NaH and NaD. Zeitschrift Fýr Physik D-Atoms Molecules and Clusters, 1996, 38, 35-40.	1.0	5
189	Ring Opening in the Dehydrocholesterolâ^'Previtamin D System Studied by Ultrafast Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 921-927.	2.9	51
190	Rotational and vibrational temperature determination by DFWM spectroscopy. Applied Physics B: Lasers and Optics, 1995, 61, 311-318.	1.1	12
191	Generation and full characterization of sub20 fs pulses tunable in the UV., 0,,.		0
192	Generation of 7-fs pulses tunable around 300 nm. , 0, , .		0
193	50 femtosecond electron transfer in lactones. , 0, , .		0
194	Shaped tunable pulses in the UV with 20 fs sub-structures. , 0, , .		0
195	Two-photon, visible light water splitting at a molecular ruthenium complex. Energy and Environmental Science, 0, , .	15.6	18