Alberto A Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2264933/publications.pdf

Version: 2024-02-01

147801 168389 3,972 146 31 53 citations g-index h-index papers 151 151 151 3064 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The ADP-glucose pyrophosphorylase from Melainabacteria: a comparative study between photosynthetic and non-photosynthetic bacterial sources. Biochimie, 2022, 192, 30-37.	2.6	3
2	Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. Plant Molecular Biology, 2022, 108, 307-323.	3.9	23
3	Structural Determinants of Sugar Alcohol Biosynthesis in Plants: The Crystal Structures of Mannose-6-Phosphate and Aldose-6-Phosphate Reductases. Plant and Cell Physiology, 2022, 63, 658-670.	3.1	1
4	Functional characterization of monothiol and dithiol glutaredoxins from Leptospira interrogans. Biochimie, 2022, 197, 144-159.	2.6	3
5	Carbohydrate Metabolism in Bacteria: Alternative Specificities in ADP-Glucose Pyrophosphorylases Open Novel Metabolic Scenarios and Biotechnological Tools. Frontiers in Microbiology, 2022, 13, 867384.	3.5	2
6	Siteâ€directed mutagenesis of Serineâ€₹2 reveals the location of the fructose 6â€phosphate regulatory site of the <i>Agrobacterium tumefaciens</i> <scp>ADP</scp> â€glucose pyrophosphorylase. Protein Science, 2022, 31, .	7.6	0
7	Functional characterization of methionine sulfoxide reductases from Leptospira interrogans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140575.	2.3	1
8	Proteolytic cleavage of <i>Arabidopsis thaliana</i> phospho <i>enol</i> pyruvate carboxykinase-1 modifies its allosteric regulation. Journal of Experimental Botany, 2021, 72, 2514-2524.	4.8	6
9	Elucidating carbohydrate metabolism in Euglena gracilis: Reverse genetics-based evaluation of genes coding for enzymes linked to paramylon accumulation. Biochimie, 2021, 184, 125-131.	2.6	9
10	Nucleotide-sugar metabolism in plants: the legacy of Luis F. Leloir. Journal of Experimental Botany, 2021, 72, 4053-4067.	4.8	17
11	Tyrâ€Asp inhibition of glyceraldehyde 3â€phosphate dehydrogenase affects plant redox metabolism. EMBO Journal, 2021, 40, e106800.	7.8	29
12	Simultaneous inhibition of PFKFB3 and GLS1 selectively kills KRAS-transformed pancreatic cells. Biochemical and Biophysical Research Communications, 2021, 571, 118-124.	2.1	6
13	On the functionality of the N-terminal domain in xylanase 10A from Ruminococcus albus 8. Enzyme and Microbial Technology, 2020, 142, 109673.	3.2	3
14	On the functionality of a methionine sulfoxide reductase B from Trypanosoma cruzi. Free Radical Biology and Medicine, 2020, 158, 96-114.	2.9	4
15	Phosphorylation of ADP-Glucose Pyrophosphorylase During Wheat Seeds Development. Frontiers in Plant Science, 2020, 11, 1058.	3.6	23
16	Glucosamine-P and rhodococcal ADP-glucose pyrophosphorylases: A hint to (re)discover (actino)bacterial amino sugar metabolism. Biochimie, 2020, 176, 158-161.	2.6	7
17	Biochemical characterization of recombinant UDP-sugar pyrophosphorylase and galactinol synthase from Brachypodium distachyon. Plant Physiology and Biochemistry, 2020, 155, 780-788.	5.8	3
18	PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells. Molecular and Cellular Biochemistry, 2020, 470, 115-129.	3.1	29

#	Article	IF	Citations
19	On the simultaneous activation of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by pyruvate and fructose 6-phosphate. Biochimie, 2020, 171-172, 23-30.	2.6	6
20	First evidence of glutathione metabolism in Leptospira interrogans. Free Radical Biology and Medicine, 2019, 143, 366-374.	2.9	5
21	Biochemical characterization of phospho <i>enol</i> pyruvate carboxykinases from <i>Arabidopsis thaliana</i> . Biochemical Journal, 2019, 476, 2939-2952.	3.7	13
22	New pieces to the carbon metabolism puzzle of Nitrosomonas europaea: Kinetic characterization of glyceraldehyde-3 phosphate and succinate semialdehyde dehydrogenases. Biochimie, 2019, 158, 238-245.	2.6	3
23	Cofactor Specificity Switch on Peach Glucitol Dehydrogenase. Biochemistry, 2019, 58, 1287-1294.	2.5	1
24	Mapping of a Regulatory Site of the Escherichia coli ADP-Glucose Pyrophosphorylase. Frontiers in Molecular Biosciences, 2019, 6, 89.	3.5	9
25	Heterologous expression and kinetic characterization of the \hat{l}_{\pm} , \hat{l}^2 and $\hat{l}_{\pm}\hat{l}^2$ blend of the PPi-dependent phosphofructokinase from Citrus sinensis. Plant Science, 2019, 280, 348-354.	3.6	7
26	Structural analysis reveals a pyruvate-binding activator site in the Agrobacterium tumefaciens ADP–glucose pyrophosphorylase. Journal of Biological Chemistry, 2019, 294, 1338-1348.	3.4	11
27	Starch Synthesis in Ostreococcus tauri: The Starch-Binding Domains of Starch Synthase III-B Are Essential for Catalytic Activity. Frontiers in Plant Science, 2018, 9, 1541.	3.6	9
28	Resurrecting the Regulatory Properties of the Ostreococcus tauri ADP-Glucose Pyrophosphorylase Large Subunit. Frontiers in Plant Science, 2018, 9, 1564.	3.6	9
29	On the Roles of Wheat Endosperm ADP-Glucose Pyrophosphorylase Subunits. Frontiers in Plant Science, 2018, 9, 1498.	3.6	13
30	Elucidating paramylon and other carbohydrate metabolism in Euglena gracilis: Kinetic characterization, structure and cellular localization of UDP-glucose pyrophosphorylase. Biochimie, 2018, 154, 176-186.	2.6	8
31	Regulatory Properties of the ADP-Glucose Pyrophosphorylase from the Clostridial Firmicutes Member Ruminococcus albus. Journal of Bacteriology, 2018, 200, .	2.2	14
32	A fluorometric method for the assay of protein kinase activity. Analytical Biochemistry, 2018, 557, 120-122.	2.4	10
33	Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Archives of Biochemistry and Biophysics, 2017, 618, 52-61.	3.0	11
34	The Production and Utilization of GDP-glucose in the Biosynthesis of Trehalose 6-Phosphate by Streptomyces venezuelae. Journal of Biological Chemistry, 2017, 292, 945-954.	3.4	13
35	Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie, 2017, 133, 37-44.	2.6	10
36	On the stability of nucleoside diphosphate glucose metabolites: implications for studies of plant carbohydrate metabolism. Journal of Experimental Botany, 2017, 68, 3331-3337.	4.8	10

#	Article	IF	Citations
37	Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated during Seed Development. Frontiers in Plant Science, 2017, 8, 522.	3.6	37
38	Allosteric Control of Substrate Specificity of the Escherichia coli ADP-Glucose Pyrophosphorylase. Frontiers in Chemistry, 2017, 5, 41.	3.6	11
39	Monofluorophosphate Blocks Internal Polysaccharide Synthesis in Streptococcus mutans. PLoS ONE, 2017, 12, e0170483.	2.5	6
40	On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria. Frontiers in Microbiology, 2016, 7, 830.	3.5	21
41	Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants. Plant and Cell Physiology, 2016, 58, pcw180.	3.1	9
42	Functional thioredoxin reductase from pathogenic and free-living Leptospira spp Free Radical Biology and Medicine, 2016, 97, 1-13.	2.9	7
43	A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Reports, 2016, 35, 1875-1890.	5.6	27
44	The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. Journal of Biotechnology, 2016, 222, 73-83.	3.8	42
45	Carbon Photoassimilation and Photosynthate Partitioning in Plants. Books in Soils, Plants, and the Environment, 2016, , 509-535.	0.1	2
46	On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli. Frontiers in Microbiology, 2015, 6, 1253.	3.5	12
47	The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes. Journal of Bacteriology, 2015, 197, 2734-2746.	2.2	23
48	New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1233-1244.	2.4	18
49	Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II. Journal of Proteomics, 2015, 120, 95-104.	2.4	27
50	The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 88-96.	2.4	16
51	Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 13-21.	2.4	27
52	Re-Paving the Road Built by Chemistry: A Challenge to Biochemistry and Biotechnology. American Journal of Biochemistry and Biotechnology, 2015, 11, 3-4.	0.4	6
53	A Novel Dual Allosteric Activation Mechanism of Escherichia coli ADP-Glucose Pyrophosphorylase: The Role of Pyruvate. PLoS ONE, 2014, 9, e103888.	2.5	16
54	Redox metabolism in Trypanosoma cruzi. Biochemical characterization of dithiol glutaredoxin dependent cellular pathways. Biochimie, 2014, 106, 56-67.	2.6	24

#	Article	IF	Citations
55	Kinetic and structural characterization of a typical two-cysteine peroxiredoxin from Leptospira interrogans exhibiting redox sensitivity. Free Radical Biology and Medicine, 2014, 77, 30-40.	2.9	13
56	Biochemical characterization of thioredoxin reductase from Babesia bovis. Biochimie, 2014, 99, 44-53.	2.6	8
57	Glucitol Dehydrogenase from Peach (Prunus persica) Fruits is Regulated by Thioredoxin h. Plant and Cell Physiology, 2014, 55, 1157-1168.	3.1	11
58	lodine Staining of Escherichia coli Expressing Genes Involved in the Synthesis of Bacterial Glycogen. Bio-protocol, 2014, 4, .	0.4	2
59	The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms. BMC Evolutionary Biology, 2013, 13, 51.	3.2	23
60	The <scp>ADP</scp> â€glucose pyrophosphorylase from <i><scp>S</scp>treptococcus mutans</i> provides evidence for the regulation of polysaccharide biosynthesis in <scp>F</scp> irmicutes. Molecular Microbiology, 2013, 90, 1011-1027.	2.5	21
61	The unique nucleotide specificity of the sucrose synthase from <i>Thermosynechococcus elongatus</i> . FEBS Letters, 2013, 587, 165-169.	2.8	24
62	Production and characterization of Escherichia coli glycerol dehydrogenase as a tool for glycerol recycling. Process Biochemistry, 2013, 48, 406-412.	3.7	15
63	Redox metabolism in Trypanosoma cruzi: Functional characterization of tryparedoxins revisited. Free Radical Biology and Medicine, 2013, 63, 65-77.	2.9	46
64	A Differential Redox Regulation of the Pathways Metabolizing Glyceraldehyde-3-Phosphate Tunes the Production of Reducing Power in the Cytosol of Plant Cells. International Journal of Molecular Sciences, 2013, 14, 8073-8092.	4.1	36
65	A Chimeric UDP-Glucose Pyrophosphorylase Produced by Protein Engineering Exhibits Sensitivity to Allosteric Regulators. International Journal of Molecular Sciences, 2013, 14, 9703-9721.	4.1	7
66	Unraveling the Activation Mechanism of the Potato Tuber ADP-Glucose Pyrophosphorylase. PLoS ONE, 2013, 8, e66824.	2.5	16
67	Characterization of Recombinant UDP- and ADP-Glucose Pyrophosphorylases and Glycogen Synthase To Elucidate Glucose-1-Phosphate Partitioning into Oligo- and Polysaccharides in Streptomyces coelicolor. Journal of Bacteriology, 2012, 194, 1485-1493.	2.2	33
68	Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea. Journal of Bacteriology, 2012, 194, 6056-6065.	2.2	12
69	Entamoeba histolytica thioredoxin reductase: Molecular and functional characterization of its atypical properties. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1859-1866.	2.4	40
70	Plastidic Phosphoglycerate Kinase from Phaeodactylum tricornutum: On the Critical Role of Cysteine Residues for the Enzyme Function. Protist, 2012, 163, 188-203.	1.5	22
71	Redox regulation of UDP-glucose pyrophosphorylase from Entamoeba histolytica. Biochimie, 2011, 93, 260-268.	2.6	24
72	Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Biochimie, 2011, 93, 1816-1823.	2.6	31

#	Article	IF	Citations
73	Structurally Constrained Residues Outside the Binding Motif Are Essential in the Interaction of 14-3-3 and Phosphorylated Partner. Journal of Molecular Biology, 2011, 406, 552-557.	4.2	17
74	Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp Free Radical Biology and Medicine, 2011, 50, 37-46.	2.9	31
75	Functional characterization of GDP-mannose pyrophosphorylase from Leptospira interrogans serovar Copenhageni. Archives of Microbiology, 2010, 192, 103-114.	2.2	14
76	Purification and Characterization of a Glutathione Reductase from Phaeodactylum tricornutum. Protist, 2010, 161, 91-101.	1.5	20
77	Biâ€national and interdisciplinary course in enzyme engineering. Biochemistry and Molecular Biology Education, 2010, 38, 370-379.	1.2	6
78	Application of response surface methodology and artificial neural networks for optimization of recombinant Oryza sativa non-symbiotic hemoglobin 1 production by Escherichia coli in medium containing byproduct glycerol. Bioresource Technology, 2010, 101, 7537-7544.	9.6	30
79	Cloning, Expression, and Characterization of a Dithiol Glutaredoxin from <i>Trypanosoma cruzi</i> Antioxidants and Redox Signaling, 2010, 12, 787-792.	5.4	21
80	Aldose-6-phosphate reductase from apple leaves: Importance of the quaternary structure for enzyme activity. Biochimie, 2010, 92, 81-88.	2.6	12
81	Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana. Biochimie, 2010, 92, 909-913.	2.6	7
82	Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs. Plant Science, 2010, 179, 527-535.	3.6	12
83	Immunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba histolytica. Free Radical Biology and Medicine, 2008, 45, 32-39.	2.9	28
84	Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. Journal of Plant Physiology, 2008, 165, 456-461.	3.5	38
85	Characterization of Arabidopsis Lines Deficient in GAPC-1, a Cytosolic NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase. Plant Physiology, 2008, 148, 1655-1667.	4.8	115
86	Identification of Regions Critically Affecting Kinetics and Allosteric Regulation of the Escherichia coli ADP-Glucose Pyrophosphorylase by Modeling and Pentapeptide-Scanning Mutagenesis. Journal of Bacteriology, 2007, 189, 5325-5333.	2.2	43
87	Thioredoxin-linked metabolism in Entamoeba histolytica. Free Radical Biology and Medicine, 2007, 42, 1496-1505.	2.9	38
88	Carbon Metabolism in Turfgrasses. Books in Soils, Plants, and the Environment, 2007, , 29-45.	0.1	0
89	On the occurrence of thioredoxin in Trypanosoma cruzi. Acta Tropica, 2006, 97, 151-160.	2.0	25
90	Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins: Structure, Function and Bioinformatics, 2006, 63, 35-42.	2.6	103

#	Article	IF	Citations
91	Carbohydrate metabolism and fruit quality are affected in frost-exposed Valencia orange fruit. Physiologia Plantarum, 2006, 128, 224-236.	5.2	22
92	A colorimetric method for the assay of ADP-glucose pyrophosphorylase. Analytical Biochemistry, 2006, 352, 145-147.	2.4	77
93	Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Molecular Biology, 2006, 61, 945-957.	3.9	82
94	Domain Swapping between a Cyanobacterial and a Plant Subunit ADP-Glucose Pyrophosphorylase. Plant and Cell Physiology, 2006, 47, 523-530.	3.1	11
95	A model for the interaction between plant GAPN and 14-3-3ζ using protein–protein docking calculations, electrostatic potentials and kinetics. Journal of Molecular Graphics and Modelling, 2005, 23, 490-502.	2.4	14
96	Photosynthate Formation and Partitioning in Crop Plants. Books in Soils, Plants, and the Environment, 2005, , .	0.1	2
97	ADP-Glucose Pyrophosphorylase: A Regulatory Enzyme for Plant Starch Synthesis. Photosynthesis Research, 2004, 79, 1-24.	2.9	279
98	An assay for adenosine 5′-diphosphate (ADP)-glucose pyrophosphorylase that measures the synthesis of radioactive ADP-glucose with glycogen synthase. Analytical Biochemistry, 2004, 324, 52-59.	2.4	26
99	The ADP-glucose pyrophosphorylase fromEscherichia colicomprises two tightly bound distinct domains. FEBS Letters, 2004, 573, 99-104.	2.8	25
100	Ultrasensitive behavior in the synthesis of storage polysaccharides in cyanobacteria. Planta, 2003, 216, 969-975.	3.2	35
101	ADP-Glucose Pyrophosphorylase, a Regulatory Enzyme for Bacterial Glycogen Synthesis. Microbiology and Molecular Biology Reviews, 2003, 67, 213-225.	6.6	242
102	Phosphorylated Non-Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase from Heterotrophic Cells of Wheat Interacts with 14-3-3 Proteins. Plant Physiology, 2003, 133, 2081-2088.	4.8	60
103	Characterization of Chimeric ADPglucose Pyrophosphorylases ofEscherichia coliandAgrobacterium tumefaciens. Importance of the C-Terminus on the Selectivity for Allosteric Regulatorsâ€. Biochemistry, 2002, 41, 9431-9437.	2.5	39
104	Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase is post-translationally phosphorylated in heterotrophic cells of wheat (Triticum aestivum). FEBS Letters, 2002, 530, 169-173.	2.8	31
105	On the interaction of substrate analogues with non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Science, 2002, 162, 689-696.	3.6	5
106	ADP-glucose pyrophosphorylase from wheat endosperm. Purification and characterization of an enzyme with novel regulatory properties. Planta, 2002, 214, 428-434.	3.2	91
107	Identification of Functionally Important Amino-Terminal Arginines ofAgrobacterium tumefaciensADP-Glucose Pyrophosphorylase by Alanine Scanning Mutagenesisâ€. Biochemistry, 2001, 40, 10169-10178.	2.5	41
108	ULTRASENSITIVITY IN (SUPRA)MOLECULARLY ORGANIZED AND CROWDED ENVIRONMENTS. Cell Biology International, 2001, 25, 1091-1099.	3.0	17

#	Article	IF	CITATIONS
109	Measurement of the glycogen synthetic pathway in permeabilized cells of cyanobacteria. FEMS Microbiology Letters, 2001, 194, 7-11.	1.8	12
110	Kinetic and structural analysis of the ultrasensitive behaviour of cyanobacterial ADP-glucose pyrophosphorylase. Biochemical Journal, 2000, 350, 139.	3.7	16
111	Kinetic and structural analysis of the ultrasensitive behaviour of cyanobacterial ADP-glucose pyrophosphorylase. Biochemical Journal, 2000, 350, 139-147.	3.7	30
112	The kinetic properties of liver glucokinase and its function in glucose physiology as a model for the comprehensive study of enzymes' kinetic parameters and reversible inhibitors. Biochemistry and Molecular Biology Education, 2000, 28, 332-337.	1,2	4
113	The kinetic properties of liver glucokinase and its function in glucose physiology as a model for the comprehensive study of enzymes' kinetic parameters and reversible inhibitors. Biochemistry and Molecular Biology Education, 2000, 28, 332-337.	1.2	7
114	Studies on the Effect of Temperature on the Activity and Stability of Cyanobacterial ADP-Glucose Pyrophosphorylase. Archives of Biochemistry and Biophysics, 2000, 384, 319-326.	3.0	8
115	Structural and kinetic characterization of NADP-dependent, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Science, 2000, 154, 107-115.	3.6	29
116	Effects of Stress on Cellular Infrastructure and Metabolic Organization in Plant Cells. International Review of Cytology, 1999, 194, 239-273.	6.2	31
117	Ultrasensitive glycogen synthesis inCyanobacteria. FEBS Letters, 1999, 446, 117-121.	2.8	29
118	Cloning and Expression of the glgCGene from Agrobacterium tume faciens: Purification and Characterization of the ADP glucose Synthetase. Archives of Biochemistry and Biophysics, 1998, 357, 13-21.	3.0	24
119	Synthesis of Floridean Starch in the Red Alga Gracilaria Gracilis Occurs Via ADP-Glucose. , 1998, , 3537-3540.		7
120	Gene Organization and Transcription Analysis of the Agrobacterium tumefaciens Glycogen (glg) Operon: Two Transcripts for the Single Phosphoglucomutase Gene. Journal of Bacteriology, 1998, 180, 6557-6564.	2.2	38
121	A simple laboratory experiment for the teaching of the assay and kinetic characterization of enzymes. Biochemical Education, 1997, 25, 106-109.	0.1	6
122	Control of Starch Composition and Structure through Substrate Supply in the Monocellular Alga. Journal of Biological Chemistry, 1996, 271, 16281-16287.	3 . 4	91
123	The role of inorganic phosphate in the regulation of C4 photosynthesis. Photosynthesis Research, 1993, 35, 205-211.	2.9	23
124	Hysteretic properties of NADP-malic enzyme from sugarcane leaves. Photosynthesis Research, 1992, 31, 89-97.	2.9	7
125	Molecular cloning and expression of the gene encoding ADP-glucose pyrophosphorylase from the cyanobacteriumAnabaena sp. strain PCC 7120. Plant Molecular Biology, 1992, 20, 37-47.	3.9	47
126	Involvement of arginine residues in the allosteric activation and inhibition of Synechocystis PCC 6803 ADPglucose pyrophosphorylase. The Protein Journal, 1992, 11, 119-128.	1.1	21

#	Article	IF	Citations
127	Bacterial glycogen and plant starch biosynthesis. Biochemical Education, 1992, 20, 196-203.	0.1	54
128	NADP+-malic enzyme from sugarcane leaves: Structural properties studied by thermal inactivation. Archives of Biochemistry and Biophysics, 1991, 290, 272-276.	3.0	7
129	Interaction of divalent metal ions with the NADP+-malic enzyme from maize leaves. Physiologia Plantarum, 1991, 81, 462-466.	5.2	30
130	Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases. Plant Physiology, 1991, 97, 1187-1195.	4.8	85
131	NADP-dependent malate dehydrogenase (decarboxylating) from sugar cane leaves. Kinetic properties of different oligomeric structures. FEBS Journal, 1990, 192, 729-733.	0.2	27
132	Oligomeric enzymes in the C4 pathway of photosynthesis. Photosynthesis Research, 1990, 26, 161-170.	2.9	18
133	On the metabolism of triose-phosphates in photosynthetic cells. Their involvement on the traffic of ATP and NADPH. Biochemical Education, 1990, 18, 2-5.	0.1	12
134	Kinetic and Structural Properties of NADP-Malic Enzyme from Sugarcane Leaves. Plant Physiology, 1990, 92, 66-72.	4.8	45
135	Purification and kinetic and structural properties of spinach leaf NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. Archives of Biochemistry and Biophysics, 1988, 260, 830-840.	3.0	35
136	Higher plant phosphoenolpyruvate carboxylase. FEBS Letters, 1987, 213, 1-8.	2.8	212
137	Purification and properties of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the green alga Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - General Subjects, 1987, 925, 1-10.	2.4	32
138	Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate. Archives of Biochemistry and Biophysics, 1986, 245, 179-186.	3.0	30
139	Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation. Archives of Biochemistry and Biophysics, 1986, 246, 546-553.	3.0	26
140	The C4 pathway of photosynthesis and its regulation. Biochemical Education, 1986, 14, 98-102.	0.1	7
141	Chemical modification of the phosphoenolpyruvate carboxylase from maize leaves and its conformation in isotropic solution. Studies via triplet lifetime and rotational diffusion using eosin isothiocyanate as label. BBA - Proteins and Proteomics, 1986, 870, 292-301.	2.1	14
142	On the Molecular Mechanism of Maize Phosphoenolpyruvate Carboxylase Activation by Thiol Compounds. Plant Physiology, 1984, 75, 983-987.	4.8	48
143	Inactivation of phosphoenolpyruvate carboxylase from maize leaves by modification with phenylglyoxal. BBA - Proteins and Proteomics, 1984, 788, 41-47.	2.1	24
144	Involvement of thiol groups in the activity of phosphoenolpyruvate carboxylase from maize leaves. Photosynthesis Research, 1984, 5, 215-226.	2.9	30

ALBERTO A IGLESIAS

#	Article	lF	CITATION
145	On the Regulation of Phosphoenolpyruvate Carboxylase Activity from Maize Leaves by L-malate. Effect of pH. Journal of Plant Physiology, 1984, 116, 425-434.	3.5	66
146	The presence of essential histidine residues in phosphoenolpyruvate carboxylase from maize leaves. BBA - Proteins and Proteomics, 1983, 749, 9-17.	2.1	33