
Franck Dumeignil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2264012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 2018, 118, 11023-11117.	23.0	585
2	Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 2011, 13, 1960.	4.6	468
3	Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 2010, 12, 2079.	4.6	374
4	Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Applied Catalysis A: General, 2005, 279, 279-287.	2.2	271
5	Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, 2013, 3, 1819-1834.	5.5	259
6	Towards the Sustainable Production of Acrolein by Glycerol Dehydration. ChemSusChem, 2009, 2, 719-730.	3.6	221
7	Manganese Pincer Complexes for the Base-Free, Acceptorless Dehydrogenative Coupling of Alcohols to Esters: Development, Scope, and Understanding. ACS Catalysis, 2017, 7, 2022-2032.	5.5	213
8	Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable Chemical Processes, 2015, 3, .	2.3	131
9	Ru/Mn Ce1O catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. Journal of Catalysis, 2018, 368, 53-68.	3.1	121
10	A long-life catalyst for glycerol dehydration to acrolein. Green Chemistry, 2010, 12, 1922.	4.6	108
11	Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. Journal of Materials Chemistry A, 2014, 2, 11073-11090.	5.2	102
12	Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts, 2016, 6, 203.	1.6	100
13	Ethanol-to-butadiene: the reaction and its catalysts. Catalysis Science and Technology, 2020, 10, 4860-4911.	2.1	100
14	Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde. Green Chemistry, 2010, 12, 1910.	4.6	97
15	A comparison of sol–gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming. Applied Catalysis B: Environmental, 2012, 125, 516-529.	10.8	97
16	Influence of lanthanum stoichiometry in La1â^'xFeO3â^'δ perovskites on their structure and catalytic performance in CH4 total oxidation. Applied Catalysis B: Environmental, 2012, 126, 134-143.	10.8	91
17	Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights. ChemSusChem, 2016, 9, 1413-1423.	3.6	84
18	Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. Journal of Catalysis, 2014, 309, 121-135.	3.1	75

#	Article	IF	CITATIONS
19	Modification of structural and acidic properties of sol–gel-prepared alumina powders by changing the hydrolysis ratio. Applied Catalysis A: General, 2003, 241, 319-329.	2.2	72
20	Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catalysis Science and Technology, 2015, 5, 2994-3006.	2.1	72
21	Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Applied Catalysis A: General, 2014, 472, 80-91.	2.2	71
22	Hydrodesulfurization of sulfur-containing polyaromatic compounds in light gas oil using noble metal catalysts. Applied Catalysis A: General, 2005, 289, 163-173.	2.2	67
23	Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O. Applied Catalysis B: Environmental, 2013, 132-133, 170-182.	10.8	65
24	Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over intercalated vanadium phosphate oxides. RSC Advances, 2013, 3, 9942.	1.7	64
25	Deeper Mechanistic Insight into Ru Pincer-Mediated Acceptorless Dehydrogenative Coupling of Alcohols: Exchanges, Intermediates, and Deactivation Species. ACS Catalysis, 2018, 8, 4719-4734.	5.5	64
26	Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1,1-dimethoxymethane from methanol. Applied Catalysis B: Environmental, 2014, 145, 126-135.	10.8	63
27	Influence of Support Basic Sites in Green Oxidation of Biobased Substrates Using Au-Promoted Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16332-16340.	3.2	59
28	Oxidative Transformations of Biosourced Alcohols Catalyzed by Earthâ€Abundant Transition Metals. ChemCatChem, 2017, 9, 2652-2660.	1.8	57
29	Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Applied Catalysis A: General, 2016, 518, 78-86.	2.2	55
30	Synthesis, Characterization, and Catalytic Performances of Novel CoMo Hydrodesulfurization Catalysts Supported on Mesoporous Aluminas. Chemistry of Materials, 2009, 21, 522-533.	3.2	53
31	Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM. Journal of Catalysis, 2011, 279, 310-318.	3.1	50
32	Catalytic behaviour of four different supported noble metals in the crude glycerol oxidation. Applied Catalysis A: General, 2015, 499, 89-100.	2.2	50
33	Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catalysis Science and Technology, 2016, 6, 5830-5840.	2.1	49
34	Highly Efficient and Stable CeNiH _{<i>Z</i>} O _{<i>Y</i>} Nanoâ€Oxyhydride Catalyst for H ₂ Production from Ethanol at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 10193-10197.	7.2	47
35	One-pot 1,1-dimethoxymethane synthesis from methanol: a promising pathway over bifunctional catalysts. Catalysis Science and Technology, 2016, 6, 958-970.	2.1	47
36	Room Temperature Hydrogen Production from Ethanol over CeNi _{<i>X</i>} H _{<i>Z</i>} O _{<i>Y</i>} Nanoâ€Oxyhydride Catalysts. ChemCatChem, 2013, 5, 2207-2216.	1.8	46

#	Article	IF	CITATIONS
37	Hydrogen production from bioethanol catalyzed by NiXMg2AlOY ex-hydrotalcite catalysts. Applied Catalysis B: Environmental, 2014, 152-153, 370-382.	10.8	46
38	Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: Influence of catalyst structure and of hydrogen mass transfer. Journal of Catalysis, 2016, 340, 331-343.	3.1	46
39	From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future. Catalysis Science and Technology, 2018, 8, 5708-5734.	2.1	46
40	Crude glycerol as a raw material for the liquid phase oxidation reaction. Applied Catalysis A: General, 2014, 482, 245-257.	2.2	44
41	Characterization and hydrodesulfurization activity of CoMo catalysts supported on boron-doped sol–gel alumina. Applied Catalysis A: General, 2006, 315, 18-28.	2.2	42
42	Hydroconversion of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran and 2,5â€Dimethyltetrahydrofuran over Nonâ€promoted Ni/SBAâ€15. ChemCatChem, 2020, 12, 2050-2059.	1.8	41
43	Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane. Chemical Communications, 2008, , 865-867.	2.2	40
44	Chemistry of Preparation of Alumina Aerogels in Presence of a Complexing Agent. Journal of Sol-Gel Science and Technology, 2002, 24, 113-120.	1.1	39
45	ZnTa-TUD-1 as an easily prepared, highly efficient catalyst for the selective conversion of ethanol to 1,3-butadiene. Green Chemistry, 2018, 20, 3203-3209.	4.6	39
46	Quasiâ€Homogeneous Oxidation of Glycerol by Unsupported Gold Nanoparticles in the Liquid Phase. ChemSusChem, 2012, 5, 2065-2078.	3.6	38
47	Performance of Ag/Al ₂ O ₃ catalysts in the liquid phase oxidation of glycerol – effect of preparation method and reaction conditions. Catalysis Science and Technology, 2016, 6, 3182-3196.	2.1	38
48	Hydrogen production from ethanol steam reforming over cerium and nickel based oxyhydrides. International Journal of Hydrogen Energy, 2010, 35, 12741-12750.	3.8	37
49	Direct conversion of methanol into 1,1-dimethoxymethane: remarkably high productivity over an FeMo catalyst placed under unusual conditions. Green Chemistry, 2010, 12, 1722.	4.6	37
50	Regeneration of Silica‣upported Silicotungstic Acid as a Catalyst for the Dehydration of Glycerol. ChemSusChem, 2012, 5, 1298-1306.	3.6	37
51	Ce–Ni mixed oxide as efficient catalyst for H2 production and nanofibrous carbon material from ethanol in the presence of water. RSC Advances, 2012, 2, 9626.	1.7	36
52	Synthesis of pyruvic acid by vapour phase catalytic oxidative dehydrogenation of lactic acid. Journal of Molecular Catalysis A, 2013, 377, 123-128.	4.8	36
53	Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol. Journal of Molecular Catalysis A, 2013, 368-369, 125-136.	4.8	36
54	Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses. Materials Today Sustainability, 2020, 10, 100053.	1.9	35

#	Article	IF	CITATIONS
55	Non-conventional sol–gel synthesis for the production of boron-alumina catalyst applied to the vapour phase Beckmann rearrangement. Applied Catalysis A: General, 2003, 248, 47-57.	2.2	34
56	Advanced functionalized Mg 2 AlNi X H Z O Y nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol. International Journal of Hydrogen Energy, 2016, 41, 15443-15452.	3.8	34
57	Direct Conversion of Glycerol to Allyl Alcohol Over Aluminaâ€Supported Rhenium Oxide. ChemistrySelect, 2017, 2, 9864-9868.	0.7	32
58	Description of coordinatively unsaturated sites regeneration over MoS2-based HDS catalysts using 35S experiments combined with computer simulations. Applied Catalysis A: General, 2005, 289, 51-58.	2.2	30
59	Guerbet Reaction over Strontiumâ€6ubstituted Hydroxyapatite Catalysts Prepared at Various (Ca+Sr)/P Ratios. ChemCatChem, 2017, 9, 2250-2261.	1.8	30
60	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.4	29
61	Highly loaded well dispersed stable Ni species in NiXMg2AlOY nanocomposites: Application to hydrogen production from bioethanol. Applied Catalysis B: Environmental, 2015, 166-167, 485-496.	10.8	29
62	Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. RSC Advances, 2019, 9, 29888-29901.	1.7	29
63	Catalytic selective oxidation of isobutane over Cs _x (NH ₄) _{3â~x} HPMo ₁₁ VO ₄₀ mixed salts. Catalysis Science and Technology, 2014, 4, 2938.	2.1	28
64	Characterization and hydrodesulfurization activity of CoMo catalysts supported on sol–gel prepared Al2O3. Applied Catalysis A: General, 2005, 287, 135-145.	2.2	27
65	Glycerol oxidation over gold supported catalysts – "Two faces―of sulphur based anchoring agent. Journal of Molecular Catalysis A, 2014, 382, 71-78.	4.8	27
66	Dehydration of Lactic Acid: The State of The Art. ChemBioEng Reviews, 2018, 5, 34-56.	2.6	27
67	The various levels of integration of chemo- and bio-catalysis towards hybrid catalysis. Catalysis Science and Technology, 2020, 10, 7082-7100.	2.1	27
68	Glycerol-Derived Renewable Polyglycerols: A Class of Versatile Chemicals of Wide Potential Application. Organic Process Research and Development, 2015, 19, 748-754.	1.3	26
69	Preparation of nickel (oxide) nanoparticles confined in the secondary pore network of mesoporous scaffolds using melt infiltration. Catalysis Today, 2019, 334, 48-58.	2.2	26
70	Transesterification of Diethyl Oxalate with Phenol over Sol–Gel MoO ₃ /TiO ₂ Catalysts. ChemSusChem, 2012, 5, 1467-1473.	3.6	25
71	Liquid phase oxidation of glycerol in batch and flow-type reactors with oxygen over Au–Pd nanoparticles stabilized in anion-exchange resin. RSC Advances, 2014, 4, 33416-33423.	1.7	25
72	Alâ€doped SBAâ€15 Catalysts for Lowâ€temperature Dehydration of 1,3â€Butanediol into Butadiene. ChemCatChem, 2017, 9, 258-262.	1.8	25

#	Article	IF	CITATIONS
73	Catalytic decarboxylation of fatty acids to hydrocarbons over nonâ€noble metal catalysts: the state of the art. Journal of Chemical Technology and Biotechnology, 2019, 94, 658-669.	1.6	25
74	Characterization of Boriaâ^'Alumina Mixed Oxides Prepared by a Solâ^'Gel Method. 2. Characterization of the Calcined Xerogels. Chemistry of Materials, 2005, 17, 2369-2377.	3.2	24
75	A Pd/CeO ₂ "H ₂ Pump―for the Direct Amination of Alcohols. ChemCatChem, 2016, 8, 3347-3352.	1.8	24
76	Glycerol to Glyceraldehyde Oxidation Reaction Over Pt-Based Catalysts Under Base-Free Conditions. Frontiers in Chemistry, 2019, 7, 156.	1.8	24
77	Hydrogen production from ethanol in presence of water over cerium and nickel mixed oxides. Catalysis Today, 2010, 157, 456-461.	2.2	23
78	Development of Silver Based Catalysts Promoted by Noble Metal M (M = Au, Pd or Pt) for Glycerol Oxidation in Liquid Phase. Topics in Catalysis, 2017, 60, 1072-1081.	1.3	23
79	Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base. Catalysts, 2020, 10, 73.	1.6	23
80	Investigation of sulfur behavior on CoMo-based HDS catalysts supported on high surface area TiO2 by 35S radioisotope tracer method. Applied Catalysis A: General, 2005, 292, 50-60.	2.2	22
81	Characterization of Boriaâ^'Alumina Mixed Oxides Prepared by a Solâ^'Gel Method. 1. NMR Characterization of the Xerogels. Chemistry of Materials, 2005, 17, 2361-2368.	3.2	22
82	Microscope Analysis of Au–Pd/TiO2 Glycerol Oxidation Catalysts Prepared by Deposition–Precipitation Method. Catalysis Letters, 2014, 144, 2167-2175.	1.4	21
83	Ethanol reactivity over La1+x FeO3+δ perovskites. Applied Catalysis A: General, 2016, 511, 141-148.	2.2	21
84	Efficient Oxidative Esterification of Furfural Using Au Nanoparticles Supported on Group 2 Alkaline Earth Metal Oxides. Catalysts, 2020, 10, 430.	1.6	21
85	Elucidation of sulfidation state and hydrodesulfurization mechanism on ruthenium–cesium sulfide catalysts using 35S radioisotope tracer methods. Journal of Catalysis, 2003, 217, 59-59.	3.1	20
86	Novel hydrodesulfurization catalysts derived from a rhodium carbonyl complex. Journal of Molecular Catalysis A, 2004, 209, 155-162.	4.8	20
87	Solvent- and base-free synthesis of wax esters from fatty acid methyl esters by consecutive one-pot, two-step catalysis. Green Chemistry, 2017, 19, 5665-5673.	4.6	20
88	Biorefineries. , 2015, , .		20
89	Inhibiting effect of H2S on the DBT HDS activity of Ru-based catalysts—effect of the Cs addition. Journal of Catalysis, 2004, 224, 243-251.	3.1	19
90	Plasmonic enhanced photocatalytic activity of semiconductors for the degradation of organic pollutants under visible light. Materials Science in Semiconductor Processing, 2016, 42, 81-84.	1.9	19

#	Article	IF	CITATIONS
91	Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chemistry, 2021, 23, 8453-8457.	4.6	19
92	Synthesis of high surface area boria–alumina mixed oxides characterization by 11B- and 27Al-NMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 158, 75-81.	2.3	18
93	Novel direct amination of glycerol over heteropolyacid-based catalysts. Catalysis Science and Technology, 2016, 6, 2129-2135.	2.1	18
94	Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts. Journal of Chemical Education, 2017, 94, 675-689.	1.1	18
95	Optimisation of catalysts coupling in multi-catalytic hybrid materials: perspectives for the next revolution in catalysis. Green Chemistry, 2021, 23, 1942-1954.	4.6	18
96	In situXAFS analysis system for high-pressure catalytic reactions and its application to CO2hydrogenation over a Rh/Y-zeolite catalyst. Journal of Synchrotron Radiation, 2001, 8, 581-583.	1.0	17
97	Elucidation of Retarding Effects of Sulfur and Nitrogen Compounds on Aromatic Compounds Hydrogenation. Energy & Fuels, 2003, 17, 1338-1345.	2.5	17
98	Selective oxidation of ethanol towards a highly valuable product over industrial and model catalysts. Biofuels, 2012, 3, 25-34.	1.4	17
99	Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoO _{<i>x</i>} /TiO ₂ catalysts. Energy Science and Engineering, 2015, 3, 115-125.	1.9	17
100	Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7. Catalysis Communications, 2017, 89, 14-18.	1.6	17
101	Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials, 2019, 12, 43.	1.3	17
102	Properties and activity of Zn–Ta-TUD-1 in the Lebedev process. Green Chemistry, 2020, 22, 2558-2574.	4.6	17
103	Tuning Hydrodesulfurization Activeâ€Phase Dispersion using Optimized Mesoporous Titaniaâ€Đoped Silica Supports. ChemCatChem, 2014, 6, 328-338.	1.8	16
104	Alkaline-Based Catalysts for Glycerol Polymerization Reaction: A Review. Catalysts, 2020, 10, 1021.	1.6	16
105	Hybrid Conversion of <i>5</i> â€Hydroxymethylfurfural to <i>5</i> â€Aminomethylâ€ <i>2</i> â€furancarboxylic acid: Toward New Bioâ€sourced Polymers. ChemCatChem, 2021, 13, 247-259.	1.8	16
106	Elucidation by computer simulations of the CUS regeneration mechanism during HDS over MoS2 in combination with 35S experiments. Research on Chemical Intermediates, 2003, 29, 589-607.	1.3	15
107	Ammoxidation of allyl alcohol – a sustainable route to acrylonitrile. Green Chemistry, 2013, 15, 3015.	4.6	15
108	Catalytic Dehydration of Glycerol to Acrolein in a Two-Zone Fluidized Bed Reactor. Frontiers in Chemistry, 2019, 7, 127.	1.8	15

#	Article	IF	CITATIONS
109	5-Hydroxymethylfurfural and Furfural Base-Free Oxidation over AuPd Embedded Bimetallic Nanoparticles. Catalysts, 2020, 10, 75.	1.6	15
110	Lactic Acid Conversion to Acrylic Acid Over Fluoride-Substituted Hydroxyapatites. Frontiers in Chemistry, 2020, 8, 421.	1.8	15
111	High resolution NMR unraveling Cu substitution of Mg in hydrotalcites–ethanol reactivity. Applied Catalysis A: General, 2015, 504, 533-541.	2.2	14
112	Kinetic modeling of the quasiâ€homogeneous oxidation of glycerol over unsupported gold particles in the liquid phase. European Journal of Lipid Science and Technology, 2016, 118, 72-79.	1.0	14
113	From a Sequential Chemo-Enzymatic Approach to a Continuous Process for HMF Production from Glucose. Catalysts, 2018, 8, 335.	1.6	14
114	Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol. Applied Catalysis A: General, 2022, 633, 118527.	2.2	14
115	In-situ XAFS Analysis of Y Zeolite-Supported Rh Catalysts during High-Pressure Hydrogenation of CO2. Topics in Catalysis, 2002, 18, 59-65.	1.3	13
116	Novel hydrodesulfurization catalysts derived from a supported rhodium carbonyl complex. Journal of Molecular Catalysis A, 2004, 213, 207-215.	4.8	13
117	Structural Evolution under Reaction Conditions of Supported (NH4)3HPMo11VO40 Catalysts for the Selective Oxidation of Isobutane. Catalysts, 2015, 5, 460-477.	1.6	13
118	Role of Crystalline Structure in Allyl Alcohol Selective Oxidation over Mo ₃ VO _{<i>x</i>} Complex Metal Oxide Catalysts. ChemCatChem, 2016, 8, 2415-2420.	1.8	13
119	Efficient deuterium labelling of alcohols in deuterated water catalyzed by ruthenium pincer complexes. Catalysis Communications, 2016, 84, 67-70.	1.6	13
120	Hybrid Catalysis: A Suitable Concept for the Valorization of Biosourced Saccharides to Valueâ€Added Chemicals. ChemCatChem, 2017, 9, 2080-2084.	1.8	13
121	An acrolein production route from ethanol and methanol mixtures over FeMo-based catalysts. Green Chemistry, 2017, 19, 2666-2674.	4.6	13
122	Transformation of dl Limonene into Aromatic Compounds Using Supported Heteropolyacid Catalysts. Catalysis Letters, 2019, 149, 328-337.	1.4	13
123	An Alternative to the Cymenes Production from Scrap Tire Rubber Using Heteropolyacid Catalysts. Waste and Biomass Valorization, 2019, 10, 3057-3069.	1.8	13
124	Improving the synthesis of Zn-Ta-TUD-1 for the Lebedev process using the Design of Experiments methodology. Applied Catalysis A: General, 2020, 591, 117386.	2.2	13
125	SynthÃ [°] se directe du 1,1-diméthoxyméthane à partir de méthanol moyennant une modification mineure du procédé de production de formaldéhyde sur catalyseurs FeMo. Oil and Gas Science and Technology, 2010, 65, 751-762.	1.4	12
126	First catalytic asymmetric hydrogenation of quinoxaline-2-carboxylates. Tetrahedron, 2016, 72, 1375-1380.	1.0	12

#	Article	IF	CITATIONS
127	Vanadium-based highly active and selective catalysts for oxidative dehydrogenation of ethyl lactate to ethyl pyruvate. Applied Catalysis A: General, 2019, 587, 117246.	2.2	12
128	Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes. Journal of Materials Chemistry A, 2020, 8, 10395-10401.	5.2	12
129	Investigation of Sulfur Behavior on Mo-based Hydrodesulfurization Catalysts Supported on High Surface Area TiO ₂ by ³⁵ S Radioisotope Tracer Method. Journal of the Japan Petroleum Institute, 2005, 48, 37-44.	0.4	12
130	Study of the sulfidation process of CrO3–Al2O3 hydrodesulfurization catalysts by a 35S-labeled H2S pulse tracer method. Applied Catalysis A: General, 2003, 249, 255-263.	2.2	11
131	The production of 1,3-butadiene from bio-1-butanol over Re-W/α-Al2O3 porous ceramic converter. Catalysis Communications, 2019, 128, 105714.	1.6	11
132	The importance of the shape of Cu2O nanocrystals on plasmon-enhanced oxygen evolution reaction in alkaline media. Electrochimica Acta, 2021, 390, 138810.	2.6	11
133	Acrolein production from methanol and ethanol mixtures over La- and Ce-doped FeMo catalysts. Applied Catalysis B: Environmental, 2018, 237, 149-157.	10.8	10
134	Thermoplasmonic-induced energy-efficient catalytic oxidation of glycerol over gold supported catalysts using visible light at ambient temperature. Applied Catalysis A: General, 2019, 572, 9-14.	2.2	10
135	Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/Î ³ -Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108265.	1.8	10
136	Investigating the active phase of Ca-based glycerol polymerization catalysts: On the importance of calcium glycerolate. Molecular Catalysis, 2021, 507, 111571.	1.0	10
137	Synthesis and characterization of zirconia-grafted SBA-15 nanocomposites. Journal of Materials Chemistry, 2011, 21, 8159.	6.7	9
138	High yield lactic acid selective oxidation into acetic acid over a Mo-V-Nb mixed oxide catalyst. Sustainable Chemical Processes, 2015, 3, .	2.3	9
139	Role of Promoters on the Acrolein Ammoxidation Performances of BiMoO _{<i>x</i>} . JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 431-443.	0.8	9
140	Kinetic modelling of the glycerol oxidation in the liquid phase: comparison of Pt, Au and Ag <scp>AS</scp> active phases. Journal of Chemical Technology and Biotechnology, 2017, 92, 2267-2275.	1.6	9
141	Glycerol Oxidation in the Liquid Phase over a Gold-Supported Catalyst: Kinetic Analysis and Modelling. ChemEngineering, 2017, 1, 7.	1.0	9
142	Influence of the structure of trigonal Mo-V-M3rd oxides (M3rd = -, Fe, Cu, W) on catalytic performances in selective oxidations of ethane, acrolein, and allyl alcohol. Applied Catalysis A: General, 2019, 584, 117151.	2.2	9
143	Supported Rb- or Cs-containing HPA catalysts for the selective oxidation of isobutane. Applied Catalysis A: General, 2021, 628, 118400.	2.2	9
144	Al-modified mesoporous silica for efficient conversion of methanol to dimethyl ether. RSC Advances, 2013, 3, 5895.	1.7	8

#	Article	IF	CITATIONS
145	REALCAT: A New Platform to Bring Catalysis to the Lightspeed. Oil and Gas Science and Technology, 2015, 70, 455-462.	1.4	8
146	Catalytic Production of Glycolic Acid from Glycerol Oxidation: An Optimization Using Response Surface Methodology. Catalysts, 2021, 11, 257.	1.6	8
147	Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: A Critical Review. Catalysts, 2021, 11, 769.	1.6	8
148	Dehydrogenation of Cumene to α-Methylstyrene on [Re,W]/γ-Al2O3(K,Ce)/α-Al2O3 and [Fe,Cr]/γ-Al2O3(K,Ce)/α-Al2O3 Porous Ceramic Catalytic Converters. Petroleum Chemistry, 2020, 60, 1268-1283.	0.4	8
149	Degradation of Carbazole by <i>Novosphingobium</i> sp. Strain NIY3. Journal of the Japan Petroleum Institute, 2008, 51, 174-179.	0.4	8
150	Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization. Catalysts, 2021, 11, 1247.	1.6	8
151	Interpretation of the difference of optimal Mo density in MoS2-Al2O3 and MoS2-TiO2 HDS catalysts. Research on Chemical Intermediates, 2005, 31, 819-832.	1.3	7
152	Chemical Catalysis and Biotechnology: From a Sequential Engagement to a One-Pot Wedding. Chemie-Ingenieur-Technik, 2014, 86, 1496-1496.	0.4	7
153	Glycerol Partial Oxidation over Pt/Al ₂ O ₃ Catalysts under Basic and Baseâ€Free Conditions—Effect of the Particle Size. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 63-74.	0.8	7
154	Open Bioeconomy—A Bibliometric Study on the Accessibility of Articles in the Field of Bioeconomy. Publications, 2020, 8, 55.	1.9	7
155	Ĵ³-ā,¢āf«āfŸāfŠæ‹æŒēŠā,^ã³é«~e¡¨é¢ç©ēfē,¿āf‹ā,¢æ‹æŒēf¢āfªāf–āf‡āf³ï¼Œā,³āfēf«āf~āf¢āfªāf–āj	°‡ãoj.¾1∕4Œ	ãf6ãffã,±â <mark>f</mark> ∢
156	Extending Catalyst Life in Glycerol-to-Acrolein Conversion Using Non-thermal Plasma. Frontiers in Chemistry, 2019, 7, 108.	1.8	6
157	Propriétés et utilisation de l'huile de ricin. Oleagineux Corps Gras Lipides, 2012, 19, 10-15.	0.2	5
158	Synthesis of 1,3-Butadiene from 1-Butanol on a Porous Ceramic [Fe,Cr]∬³-Al2O3(K,Ce)∬±-Al2O3 Catalytic Converter. Kinetics and Catalysis, 2020, 61, 390-404.	0.3	5
159	Efficient non-noble Ni–Cu based catalysts for the valorization of palmitic acid through a decarboxylation reaction. Catalysis Science and Technology, 2021, 11, 3025-3038.	2.1	5
160	Reply to the Letter to the Editor concerning the comments of M.A. Banares and M.O. Guerrero-Pérez to the article "Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O― Applied Catalysis B: Environmental, 2014, 148-149, 604-605.	10.8	4
161	Design of a multi-well plate for high-throughput characterization of heterogeneous catalysts by XRD, FT-IR, Raman and XRF spectroscopies. RSC Advances, 2018, 8, 40912-40920.	1.7	4
162	Synthesis, characterization and HDS activity of CoMo/Al2O3 catalysts prepared by two ways (impregnation of a sol-gel alumina and complete sol-gel synthesis). Studies in Surface Science and Catalysis, 1999, , 357-360.	1.5	3

#	Article	IF	CITATIONS
163	Mesoporous TiO2-SBA15 composites used as supports for molybdenum-based hydrotreating catalysts. Studies in Surface Science and Catalysis, 2010, , 587-591.	1.5	3
164	Novel La ₃ Fe(MoO ₄) ₆ phase: magnetic properties and ethanol reactivity. Dalton Transactions, 2015, 44, 14444-14452.	1.6	3
165	Isoprene Formation from Isoamyl Alcohol in Microchannels of a Converter Modified with Nanoscale Catalytic Iron–Chromium-Containing Systems. Petroleum Chemistry, 2019, 59, 405-411.	0.4	3
166	Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules, 2022, 27, 3889.	1.7	3
167	Oxidation of but-3-en-1,2-diol: Green access to hydroxymethionine intermediate. Catalysis Today, 2017, 279, 164-167.	2.2	2
168	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	1.8	2
169	Effect of precursors on structure of Rh nanoparticles on SiO2 support: in-situ EXAFS observation during CO2 hydrogenation. Studies in Surface Science and Catalysis, 2001, , 737-740.	1.5	1
170	Controlled synthesis of porous heteropolysalts used as catalysts supports. Studies in Surface Science and Catalysis, 2010, , 811-814.	1.5	1
171	Synthesis and application of fatty acid derived templates for the preparation of mesostructured silica material. RSC Advances, 2015, 5, 82488-82491.	1.7	1
172	Probing Functionalities and Acidity of Calcined Phenylene-Bridged Periodic Mesoporous Organosilicates Using Dynamic Nuclear Polarization NMR, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 6110-6120.	1.5	1
173	Synthesis and characterization of zirconia-alumina mixed oxides. Studies in Surface Science and Catalysis, 1997, , 547-560.	1.5	0
174	6. Biomass-derived molecules conversion to chemicals using heterogeneous and homogeneous catalysis. , 2015, , 141-164.		0
175	Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights. ChemSusChem, 2016, 9, 1350-1350.	3.6	0
176	Cover Image, Volume 92, Issue 9. Journal of Chemical Technology and Biotechnology, 2017, 92, i.	1.6	0
177	Passing the Frontiers of Liquidâ€Phase Glycerol Partial Oxidation over Supported Bimetallic Catalysts. Advanced Sustainable Systems, 2020, 4, 2000002.	2.7	0
178	Upgrading glycerol for high-value-added applications. Inform, 2015, 26, 624-627.	0.1	0
179	Pt Nanoparticles with Enhanced Deaminaseâ€like Activity: Example of Oxidative Deamination of 5â€Hydroxymethylfurfurylamine and Glutamic Acid. ChemNanoMat, 0, , .	1.5	0