Shuxiao Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2263698/shuxiao-wang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,899 370 123 74 h-index g-index citations papers 8.1 7.06 457 23,442 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
370	Drivers of improved PM air quality in China from 2013 to 2017. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24463-24469	11.5	578
369	A review of biomass burning: Emissions and impacts on air quality, health and climate in China. <i>Science of the Total Environment</i> , 2017 , 579, 1000-1034	10.2	551
368	Air quality management in China: issues, challenges, and options. <i>Journal of Environmental Sciences</i> , 2012 , 24, 2-13	6.4	377
367	Trends in anthropogenic mercury emissions in China from 1995 to 2003. <i>Environmental Science & Environmental Science</i>	10.3	370
366	Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. <i>Atmospheric Environment</i> , 2008 , 42, 8442-8452	5.3	359
365	Mercury emission and speciation of coal-fired power plants in China. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1183-1192	6.8	313
364	Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. <i>Environmental Science & Environmental </i>	10.3	312
363	NO_x emissions in China: historical trends and future perspectives. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 9869-9897	6.8	292
362	Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing. <i>Environmental Science & Environmental Science & Environme</i>	10.3	287
361	Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 3185-94	10.3	285
3 60	Evaluating the climate and air quality impacts of short-lived pollutants. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10529-10566	6.8	261
359	The impact of the "Air Pollution Prevention and Control Action Plan" on PM concentrations in Jing-Jin-Ji region during 2012-2020. <i>Science of the Total Environment</i> , 2017 , 580, 197-209	10.2	252
358	Air pollution and control action in Beijing. <i>Journal of Cleaner Production</i> , 2016 , 112, 1519-1527	10.3	236
357	Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China. <i>Atmospheric Environment</i> , 2013 , 70, 39-50	5.3	235
356	Emission trends and mitigation options for air pollutants in East Asia. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6571-6603	6.8	218
355	Status and characteristics of ambient PM2.5 pollution in global megacities. <i>Environment International</i> , 2016 , 89-90, 212-21	12.9	215
354	Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. <i>Atmospheric Environment</i> , 2008 , 42, 4976-4988	5.3	198

353	Particulate matter pollution over China and the effects of control policies. <i>Science of the Total Environment</i> , 2017 , 584-585, 426-447	10.2	193
352	The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. <i>Atmospheric Environment</i> , 2015 , 107, 1-8	5.3	191
351	Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. <i>Environmental Science & Environmental & Environ</i>	10.3	184
350	Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. <i>Atmospheric Environment</i> , 2010 , 44, 1515-1523	5.3	175
349	Change in household fuels dominates the decrease in PM exposure and premature mortality in China in 2005-2015. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12401-12406	11.5	175
348	Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978-2014. <i>Environmental Science & Environmental S</i>	10.3	173
347	Impact of national NOx and SO2 control policies on particulate matter pollution in China. <i>Atmospheric Environment</i> , 2013 , 77, 453-463	5.3	173
346	The impact of transportation control measures on emission reductions during the 2008 Olympic Games in Beijing, China. <i>Atmospheric Environment</i> , 2010 , 44, 285-293	5.3	173
345	Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7760-7765	11.5	172
344	Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4573-4585	6.8	169
343	Projections of SO2, NOx and carbonaceous aerosols emissions in Asia. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2009 , 61, 602-617	3.3	168
342	Characteristics and health impacts of particulate matter pollution in China (2001 0 011). <i>Atmospheric Environment</i> , 2013 , 65, 186-194	5.3	167
341	Carbonaceous aerosol emissions from household biofuel combustion in China. <i>Environmental Science & Environmental Science & En</i>	10.3	166
340	Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning. <i>Environmental Science & Environmental Science & Environment</i>	10.3	160
339	Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. <i>Environment International</i> , 2019 , 126, 747-761	12.9	149
338	Impact of aerosolfheteorology interactions on fine particle pollution during Chinal severe haze episode in January 2013. <i>Environmental Research Letters</i> , 2014 , 9, 094002	6.2	146
337	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 7423-7438	6.8	146
336	Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. <i>Science of the Total Environment</i> , 2018 , 621, 819-826	10.2	145

335	Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. <i>Environmental Pollution</i> , 2013 , 182, 101-10	9.3	145
334	Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5027-5044	6.8	140
333	Air pollution and lung cancer risks in Chinaa meta-analysis. <i>Science of the Total Environment</i> , 2006 , 366, 500-13	10.2	136
332	A novel TiO/biochar composite catalysts for photocatalytic degradation of methyl orange. <i>Chemosphere</i> , 2019 , 222, 391-398	8.4	134
331	Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. <i>Atmospheric Environment</i> , 2015 , 123, 380-391	5.3	118
330	Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. <i>Science of the Total Environment</i> , 2017 , 586, 917-929	10.2	117
329	Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	116
328	Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. <i>Journal of Environmental Sciences</i> , 2014 , 26, 13-22	6.4	113
327	Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. <i>Environmental Science & Environmental S</i>	10.3	112
326	Estimated Contributions of Emissions Controls, Meteorological Factors, Population Growth, and Changes in Baseline Mortality to Reductions in Ambient [Formula: see text] and [Formula: see text]-Related Mortality in China, 2013-2017. <i>Environmental Health Perspectives</i> , 2019 , 127, 67009	8.4	111
325	Verification of anthropogenic emissions of China by satellite and ground observations. <i>Atmospheric Environment</i> , 2011 , 45, 6347-6358	5.3	104
324	Impacts of coal burning on ambient PM_{2.5} pollution in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4477-4491	6.8	102
323	A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants. <i>Environmental Science & Environmental Scienc</i>	10.3	100
322	Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. <i>Science of the Total Environment</i> , 2017 , 576, 347-361	10.2	100
321	Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO2 and NOX Emissions Reduction in East China. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 221-227	11	99
320	Mercury Flows in China and Global Drivers. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	99
319	Nitrate dominates the chemical composition of PM during haze event in Beijing, China. <i>Science of the Total Environment</i> , 2019 , 689, 1293-1303	10.2	98
318	Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China. <i>Atmospheric Environment</i> , 2012 , 51, 94-99	5.3	93

(2007-2013)

317	Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. <i>Environmental Research Letters</i> , 2013 , 8, 024031	6.2	92
316	Characteristics of gaseous pollutants from biofuel-stoves in rural China. <i>Atmospheric Environment</i> , 2009 , 43, 4148-4154	5.3	92
315	Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. <i>Journal of Environmental Sciences</i> , 2017 , 53, 224-237	6.4	90
314	A review of atmospheric mercury emissions, pollution and control in China. <i>Frontiers of Environmental Science and Engineering</i> , 2014 , 8, 631-649	5.8	90
313	Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 1903-1914	4.4	90
312	Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11303-11314	6.8	89
311	Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. <i>Scientific Reports</i> , 2016 , 6, 28815	4.9	88
310	Emission Characteristics of Particulate Matter from Rural Household Biofuel Combustion in China. <i>Energy & Energy & Ener</i>	4.1	88
309	Modeling biogenic and anthropogenic secondary organic aerosol in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 77-92	6.8	87
308	Contributions of inter-city and regional transport to PM concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. <i>Science of the Total Environment</i> , 2019 , 660, 1191-1200	10.2	86
307	Source influence on emission pathways and ambient PM pollution over India (2015-2050). <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8017-8039	6.8	86
306	Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. <i>Environmental Science & Environmental Science</i>	10.3	85
305	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2417-2433	6.8	84
304	Important fossil source contribution to brown carbon in Beijing during winter. <i>Scientific Reports</i> , 2017 , 7, 43182	4.9	82
303	Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing. <i>Environmental Science & Environmental Science & Environme</i>	10.3	82
302	Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. <i>Engineering</i> , 2020 , 6, 1423-1431	9.7	82
301	Projections of air pollutant emissions and its impacts on regional air quality in China in 2020. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3119-3136	6.8	81
300	Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China. <i>Science of the Total Environment</i> , 2007 , 377, 12-26	10.2	81

299	Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. <i>Journal of Cleaner Production</i> , 2017 , 149, 629-635	10.3	77
298	Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. <i>Science of the Total Environment</i> , 2017 , 580, 283-296	10.2	75
297	Rapid SO₂ emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17933-17943	6.8	74
296	Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000\(\textit{D}\)00000010. Atmospheric Chemistry and Physics, 2012, 12, 11153-11163	6.8	73
295	Air quality and health benefits from fleet electrification in China. <i>Nature Sustainability</i> , 2019 , 2, 962-971	22.1	73
294	Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. <i>Atmospheric Environment</i> , 2011 , 45, 1786-1798	5.3	71
293	Deriving High-Resolution Emission Inventory of Open Biomass Burning in China based on Satellite Observations. <i>Environmental Science & Environmental S</i>	10.3	71
292	Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China. <i>Scientific Reports</i> , 2016 , 6, 19306	4.9	70
291	Source, transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1239-1254	6.8	70
2 90	A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing II ianjin Hebei region. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 12031-12050	6.8	70
289	Uncertainties in estimating mercury emissions from coal-fired power plants in China. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 2937-2946	6.8	70
288	Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 98-103	11	69
287	Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China. <i>Atmospheric Environment</i> , 2015 , 123, 440-448	5.3	68
286	Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9869-9883	6.8	68
285	Source-specific speciation profiles of PM for heavy metals and their anthropogenic emissions in China. <i>Environmental Pollution</i> , 2018 , 239, 544-553	9.3	67
284	Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. <i>Environmental Pollution</i> , 2014 , 190, 166-75	9.3	67
283	Particulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013). <i>Aerosol and Air Quality Research</i> , 2015 , 15, 494-503	4.6	67
282	Historical Trends in PM2.5-Related Premature Mortality during 1990-2010 across the Northern Hemisphere. <i>Environmental Health Perspectives</i> , 2017 , 125, 400-408	8.4	65

281	Urban cross-sector actions for carbon mitigation with local health co-benefits in China. <i>Nature Climate Change</i> , 2017 , 7, 736-742	21.4	65	
280	Internal migration and urbanization in China: impacts on population exposure to household air pollution (2000-2010). <i>Science of the Total Environment</i> , 2014 , 481, 186-95	10.2	65	
279	Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010\(\textbf{Q} 020. \) Atmospheric Environment, 2011 , 45, 6863-6871	5.3	64	
278	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1357-1371	6.8	63	
277	Mitigation Potential of Mercury Emissions from Coal-Fired Power Plants in China. <i>Energy & Energy & En</i>	4.1	63	
276	Public health benefits of reducing air pollution in Shanghai: a proof-of-concept methodology with application to BenMAP. <i>Science of the Total Environment</i> , 2014 , 485-486, 396-405	10.2	61	
275	Mercury sorption study of halides modified bio-chars derived from cotton straw. <i>Chemical Engineering Journal</i> , 2016 , 302, 305-313	14.7	60	
274	Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10505-10516	6.8	60	
273	Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. <i>Atmospheric Environment</i> , 2015 , 120, 227-233	5.3	59	
272	Assessment of inter-city transport of particulate matter in the Beijing∏ianjin⊞ebei region. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4843-4858	6.8	59	
271	Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies. <i>Atmospheric Environment</i> , 2016 , 131, 164-170	5.3	59	
270	Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. <i>Renewable Energy</i> , 2019 , 130, 41-49	8.1	59	
269	A modeling study of coarse particulate matter pollution in Beijing: regional source contributions and control implications for the 2008 Summer Olympics. <i>Journal of the Air and Waste Management Association</i> , 2008 , 58, 1057-69	2.4	58	
268	Linking science and policy to support the implementation of the Minamata Convention on Mercury. <i>Ambio</i> , 2018 , 47, 198-215	6.5	56	
267	Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. <i>Fuel</i> , 2016 , 163, 232-239	7.1	55	
266	Mass-dependent and mass-independent fractionation of mercury isotopes in precipitation from Guiyang, SW China. <i>Comptes Rendus - Geoscience</i> , 2015 , 347, 358-367	1.4	55	
265	Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. <i>Journal of Cleaner Production</i> , 2019 , 208, 340-352	10.3	55	
264	Transition in source contributions of PM exposure and associated premature mortality in China during 2005-2015. <i>Environment International</i> , 2019 , 132, 105111	12.9	54	

263	Wet deposition of mercury at Lhasa, the capital city of Tibet. <i>Science of the Total Environment</i> , 2013 , 447, 123-32	10.2	54
262	The influence of flue gas components and activated carbon injection on mercury capture of municipal solid waste incineration in China. <i>Chemical Engineering Journal</i> , 2017 , 326, 561-569	14.7	53
261	Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China. <i>Environmental Science & Environmental Sc</i>	10.3	51
260	Intake fraction of PM2.5 and NOX from vehicle emissions in Beijing based on personal exposure data. <i>Atmospheric Environment</i> , 2012 , 57, 233-243	5.3	51
259	Estimating NH₃ emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6637-6649	6.8	51
258	Residential Coal Combustion as a Source of Levoglucosan in China. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 1665-1674	10.3	51
257	The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6167-6183	6.8	50
256	Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013-2017. <i>Environmental Science & Eamp; Technology</i> , 2019 , 53, 8938-8946	10.3	50
255	Material Flow for the Intentional Use of Mercury in China. <i>Environmental Science & Environmental Scie</i>	10.3	50
254	Modeling analysis of secondary inorganic aerosols over China: pollution characteristics, and meteorological and dust impacts. <i>Scientific Reports</i> , 2016 , 6, 35992	4.9	50
253	Impact of air pollution control policies on future PM concentrations and their source contributions in China. <i>Journal of Environmental Management</i> , 2018 , 227, 124-133	7.9	50
252	Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality. <i>Environmental Science & Damp; Technology</i> , 2017 , 51, 1007-1016	10.3	49
251	Mitigation Options of Atmospheric Hg Emissions in China. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 12368-12375	10.3	49
250	Quantification of the enhanced effectiveness of NO_{<i>x</i>} control from simultaneous reductions of VOC and NH₃ for reducing air pollution in the BeijingIIianjinHebei region, China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 7799-78	6.8 314	48
249	Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. <i>Chemical Engineering Journal</i> , 2017 , 315, 251-261	14.7	47
248	Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. <i>Fuel</i> , 2013 , 111, 621-627	7.1	46
247	Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. <i>Environmental Pollution</i> , 2012 , 171, 109-17	9.3	46
246	Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. <i>Environmental Pollution</i> , 2018 , 238, 230-237	9.3	45

245	Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. <i>Chemical Engineering Journal</i> , 2017 , 307, 544-552	14.7	44
244	New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 3532-9	10.3	44
243	Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 2245-54	10.3	44
242	A novel peat biochar supported catalyst for the transesterification reaction. <i>Energy Conversion and Management</i> , 2017 , 139, 89-96	10.6	43
241	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12195-1220	6 .8	43
240	Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. <i>Environmental Research Letters</i> , 2009 , 4, 044015	6.2	43
239	Regional transport in Beijing-Tianjin-Hebei region and its changes during 2014-2017: The impacts of meteorology and emission reduction. <i>Science of the Total Environment</i> , 2020 , 737, 139792	10.2	42
238	Air pollutants in rural homes in Guizhou, China Concentrations, speciation, and size distribution. <i>Atmospheric Environment</i> , 2010 , 44, 4575-4581	5.3	42
237	Emission-Limit-Oriented Strategy To Control Atmospheric Mercury Emissions in Coal-Fired Power Plants toward the Implementation of the Minamata Convention. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 11087-11093	10.3	42
236	Enhanced PM pollution in China due to aerosol-cloud interactions. <i>Scientific Reports</i> , 2017 , 7, 4453	4.9	41
235	Assessment of population exposure to particulate matter pollution in Chongqing, China. <i>Environmental Pollution</i> , 2008 , 153, 247-56	9.3	41
234	Spatial and temporal variation of haze in China from 1961 to 2012. <i>Journal of Environmental Sciences</i> , 2016 , 46, 134-46	6.4	40
233	Population-weighted exposure to PM pollution in China: An integrated approach. <i>Environment International</i> , 2018 , 120, 111-120	12.9	40
232	Quantifying Nonlinear Multiregional Contributions to Ozone and Fine Particles Using an Updated Response Surface Modeling Technique. <i>Environmental Science & Environmental Sci</i>	310.3	40
231	Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005\(\textbf{Z}\)020. Frontiers of Environmental Science and Engineering, 2014 , 8, 27-41	5.8	40
230	Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies. <i>Environmental Pollution</i> , 2010 , 158, 3347-53	9.3	40
229	Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 13103-13118	6.8	38
228	Investigating the impact of regional transport on PM_{2.5} formation using vertical observation during APEC 2014 Summit in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 15451-15460	6.8	37

227	Mercury mass flow in iron and steel production process and its implications for mercury emission control. <i>Journal of Environmental Sciences</i> , 2016 , 43, 293-301	6.4	37
226	Assessing the nonlinear response of fine particles to precursor emissions: development and application of an extended response surface modeling technique v1.0. <i>Geoscientific Model Development</i> , 2015 , 8, 115-128	6.3	37
225	Development of a unit-based industrial emission inventory in the Beijing I ianjin Hebei region and resulting improvement in air quality modeling. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3447-3462	6.8	36
224	Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8206-8213	11.5	36
223	The quest for improved air quality may push China to continue its CO reduction beyond the Paris Commitment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29535-29542	11.5	36
222	Meeting Minamata: Cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. <i>Energy Policy</i> , 2016 , 88, 485-494	7.2	36
221	Flow Analysis of the Mercury Associated with Nonferrous Ore Concentrates: Implications on Mercury Emissions and Recovery in China. <i>Environmental Science & Environmental Scie</i>	10.3	36
220	Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. <i>Atmospheric Environment</i> , 2011 , 45, 7574-7582	5.3	36
219	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015\(\bar{2}\)018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760	11	35
218	Mercury enrichment and its effects on atmospheric emissions in cement plants of China. <i>Atmospheric Environment</i> , 2014 , 92, 421-428	5.3	35
217	Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method. <i>Sustainability</i> , 2017 , 9, 1742	3.6	35
216	Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 565-576	6.8	34
215	High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5605-5613	6.8	34
214	Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14347-14359	6.8	34
213	Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. <i>Journal of Environmental Sciences</i> , 2016 , 42, 9-18	6.4	34
212	Effects of air pollution control measures on air quality improvement in Guangzhou, China. <i>Journal of Environmental Management</i> , 2019 , 244, 127-137	7.9	33
211	Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China. <i>Environmental Science & Environmental Science & Envi</i>	10.3	33
210	Nonlinear relationships between air pollutant emissions and PM-related health impacts in the Beijing-Tianjin-Hebei region. <i>Science of the Total Environment</i> , 2019 , 661, 375-385	10.2	32

(2015-2016)

209	Variation of Urban Atmospheric Ammonia Pollution and its Relation with PM2.5 Chemical Property in Winter of Beijing, China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1390-1402	4.6	32	
208	Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. <i>Science China Earth Sciences</i> , 2015 , 58, 345-355	4.6	31	
207	Transesterification of vegetable oil on low cost and efficient meat and bone meal biochar catalysts. <i>Energy Conversion and Management</i> , 2017 , 150, 214-221	10.6	30	
206	Intake fractions of industrial air pollutants in China: estimation and application. <i>Science of the Total Environment</i> , 2006 , 354, 127-41	10.2	30	
205	Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8279-8291	6.8	30	
204	Characteristics of mercury cycling in the cement production process. <i>Journal of Hazardous Materials</i> , 2016 , 302, 27-35	12.8	29	
203	Impacts of emissions and meteorological changes on Chinal ozone pollution in the warm seasons of 2013 and 2017. Frontiers of Environmental Science and Engineering, 2019, 13, 1	5.8	29	
202	A synthesis of research needs for improving the understanding of atmospheric mercury cycling. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9133-9144	6.8	29	
201	Local and Regional Contributions to Fine Particle Pollution in Winter of the Yangtze River Delta, China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1067-1080	4.6	29	
200	Reduction in population exposure to PM and cancer risk due to PM-bound PAHs exposure in Beijing, China during the APEC meeting. <i>Environmental Pollution</i> , 2017 , 225, 338-345	9.3	28	
199	Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2MO3/TiO2 catalyst via in situ DRIFTS. <i>Fuel</i> , 2019 , 239, 162-172	7.1	28	
198	Comparison of water-soluble inorganic ions and trace metals in PM2.5 between online and offline measurements in Beijing during winter. <i>Atmospheric Pollution Research</i> , 2019 , 10, 1755-1765	4.5	27	
197	Health benefit assessment of PM reduction in Pearl River Delta region of China using a model-monitor data fusion approach. <i>Journal of Environmental Management</i> , 2019 , 233, 489-498	7.9	27	
196	Source apportionment of Pb-containing particles in Beijing during January 2013. <i>Environmental Pollution</i> , 2017 , 226, 30-40	9.3	26	
195	Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9259-9277	6.8	26	
194	Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. <i>Journal of the Air and Waste Management Association</i> , 2010 , 60, 722-30	2.4	26	
193	Designation of acid rain and SO2 control zones and control policies in China. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2000 , 35, 1901-1914	2.3	26	
192	Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. <i>Journal of Environmental Sciences</i> , 2015 , 29, 178-88	6.4	25	

191	Impact of ultra-low emission technology retrofit on the mercury emissions and cross-media transfer in coal-fired power plants. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122729	12.8	25
190	Deep Learning for Prediction of the Air Quality Response to Emission Changes. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 8589-8600	10.3	25
189	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 632-638	11	25
188	Introduction: Air Pollution in China. <i>China Quarterly</i> , 2018 , 234, 279-298	1	25
187	Mercury concentrations in forest soils and stream waters in northeast and south China. <i>Science of the Total Environment</i> , 2014 , 496, 714-720	10.2	25
186	Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000\(\textbf{Q} 015. \) Atmospheric Chemistry and Physics, 2017 , 17, 10423-10433	6.8	25
185	Primary Suppliers Driving Atmospheric Mercury Emissions through Global Supply Chains. <i>One Earth</i> , 2019 , 1, 254-266	8.1	25
184	Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. <i>Journal of Environmental Sciences</i> , 2015 , 33, 125-34	6.4	24
183	Air quality and health co-benefits of China's national emission trading system. <i>Applied Energy</i> , 2020 , 261, 114226	10.7	24
182	Comparison and overview of PM_{2.5} source apportionment methods. <i>Chinese Science Bulletin</i> , 2015 , 60, 109-121	2.9	24
181	Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products. <i>Science of the Total Environment</i> , 2019 , 650, 653-660	10.2	24
180	Air Pollutants are associated with Dry Eye Disease in Urban Ophthalmic Outpatients: a Prevalence Study in China. <i>Journal of Translational Medicine</i> , 2019 , 17, 46	8.5	23
179	Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China. <i>Energy Policy</i> , 2014 , 69, 478-488	7.2	23
178	A Holistic Perspective Is Needed To Ensure Success of Minamata Convention on Mercury. <i>Environmental Science & Environmental &</i>	10.3	22
177	Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. <i>Science of the Total Environment</i> , 2018 , 626, 519-527	10.2	22
176	Unexpected Benefits of Reducing Aerosol Cooling Effects. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 7527-34	10.3	22
175	Indoor PM and CO concentrations in rural Guizhou, China. <i>Energy for Sustainable Development</i> , 2014 , 21, 51-59	5.4	22
174	Promoting SO Resistance of a CeO(5)-WO(9)/TiO Catalyst for Hg Oxidation via Adjusting the Basicity and Acidity Sites Using a CuO Doping Method. <i>Environmental Science & amp; Technology</i> , 2020 , 54, 1889-1897	10.3	22

(2020-2019)

173	The Hidden Hazard of Household Air Pollution in Rural China. <i>Environmental Science and Policy</i> , 2019 , 93, 27-33	6.2	22
172	Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. <i>Atmospheric Environment</i> , 2019 , 218, 117020	5.3	21
171	Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 495-509	6.8	21
170	Mercury flows in large-scale gold production and implications for Hg pollution control. <i>Journal of Environmental Sciences</i> , 2018 , 68, 91-99	6.4	21
169	Estimation of aerosol mass scattering efficiencies under high mass loading: case study for the megacity of Shanghai, China. <i>Environmental Science & Environmental & Environme</i>	10.3	21
168	Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. <i>Science of the Total Environment</i> , 2014 , 496, 668-677	10.2	21
167	Plotting of Acid Rain and Sulfur Dioxide Pollution Control Zones and Integrated Control Planning in China. <i>Water, Air, and Soil Pollution</i> , 2001 , 130, 259-264	2.6	21
166	Development and application of observable response indicators for design of an effective ozone and fine particle pollution control strategy in China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13627	7-1364	6 ²¹
165	Calculation and decomposition of China's embodied air pollutants in Sino-US trade. <i>Journal of Cleaner Production</i> , 2019 , 209, 978-994	10.3	21
164	Modeling the impact of heterogeneous reactions of chlorine on summertime nitrate formation in Beijing, China. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6737-6747	6.8	20
163	Understanding of Aerosol©limate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. <i>Current Pollution Reports</i> , 2019 , 5, 36-51	7.6	20
162	The collective contribution of Chinese cities to territorial and electricity-related CO2 emissions. Journal of Cleaner Production, 2018 , 189, 910-921	10.3	19
161	Assessment of Regional Mercury Deposition and Emission Outflow in Mainland China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 9868-9890	4.4	19
160	Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. <i>Journal of Environmental Sciences</i> , 2017 , 51, 294-304	6.4	19
159	Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams. <i>Fuel</i> , 2013 , 104, 732-738	7.1	19
158	Impacts of COVID-19 response actions on air quality in China. <i>Environmental Research Communications</i> , 2020 , 2, 075003	3.1	19
157	Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. <i>Environmental Pollution</i> , 2020 , 263, 114643	9.3	18
156	Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL087721	4.9	18

155	Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in south China. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 2006-2016	3.7	18
154	Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China. <i>Environmental Science & Description of the Combustion of th</i>	9 ⁻¹ 92 ³ 78	18
153	Is surface water acidification a serious regional issue in China?. <i>Science of the Total Environment</i> , 2017 , 584-585, 783-790	10.2	17
152	Upgrading to cleaner household stoves and reducing chronic obstructive pulmonary disease among women in rural China 🖪 cost-benefit analysis. <i>Energy for Sustainable Development</i> , 2013 , 17, 489-496	5.4	17
151	Emission trends and mitigation options for air pollutants in East Asia		17
150	Revealing the impacts of transboundary pollution on PM-related deaths in China. <i>Environment International</i> , 2020 , 134, 105323	12.9	17
149	Sources of gaseous NH in urban Beijing from parallel sampling of NH and NH, their nitrogen isotope measurement and modeling. <i>Science of the Total Environment</i> , 2020 , 747, 141361	10.2	17
148	Impacts of improved modeling resolution on the simulation of meteorology, air quality, and human exposure to PM2.5, O3 in Beijing, China. <i>Journal of Cleaner Production</i> , 2020 , 243, 118574	10.3	17
147	First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 1497-1507	10.3	17
146	Least-cost control strategy optimization for air quality attainment of Beijing-Tianjin-Hebei region in China. <i>Journal of Environmental Management</i> , 2019 , 245, 95-104	7.9	16
145	Responses of gaseous sulfuric acid and particulate sulfate to reduced SO concentration: A perspective from long-term measurements in Beijing. <i>Science of the Total Environment</i> , 2020 , 721, 1377	0 ^{100.2}	16
144	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. <i>Science of the Total Environment</i> , 2019 , 693, 133580	10.2	16
143	Indoor Emissions of Carbonaceous Aerosol and Other Air Pollutants from Household Fuel Burning in Southwest China. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 1779-1788	4.6	16
142	Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification. <i>Environmental Pollution</i> , 2016 , 218, 1191-1199	9.3	16
141	Sulfur trioxide emissions from coal-fired power plants in China and implications on future control. <i>Fuel</i> , 2020 , 261, 116438	7.1	16
140	Understanding PM2.5 sources in China: challenges and perspectives. <i>National Science Review</i> , 2017 , 4, 801-803	10.8	15
139	Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers. <i>Frontiers in Energy</i> , 2012 , 6, 98-105	2.6	15
138	Reactivity and deactivation mechanisms of toluene reforming over waste peat char-supported Fe/Ni/Ca catalyst. <i>Fuel</i> , 2020 , 271, 117517	7.1	15

(2020-2020)

137	Importance of Wintertime Antifiopogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 11809-11817	10.3	15
136	Mercury emissions from coal combustion in China 2009 , 51-65		15
135	A case study of development and application of a streamlined control and response modeling system for PM2.5 attainment assessment in China. <i>Journal of Environmental Sciences</i> , 2016 , 41, 69-80	6.4	14
134	Considerations for decision-making on distributed power generation in rural areas. <i>Energy Policy</i> , 2013 , 63, 708-715	7.2	14
133	Health benefits of on-road transportation pollution control programs in China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25370-25377	11.5	13
132	Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. <i>Science of the Total Environment</i> , 2020 , 722, 13770	1 ^{10.2}	12
131	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. <i>Environmental Science & Environmental Science & </i>	10.3	12
130	Improving Flue Gas Mercury Removal in Waste Incinerators by Optimization of Carbon Injection Rate. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 1940-1945	10.3	12
129	Behavior of Sulfur Oxides in Nonferrous Metal Smelters and Implications on Future Control and Emission Estimation. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 8796-8804	10.3	12
128	Design of a compact dilution sampler for stationary combustion sources. <i>Journal of the Air and Waste Management Association</i> , 2011 , 61, 1124-30	2.4	12
127	A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. <i>Journal of Environmental Management</i> , 2020 , 253, 109751	7.9	12
126	Study of Secondary Organic Aerosol Formation from Chlorine Radical-Initiated Oxidation of Volatile Organic Compounds in a Polluted Atmosphere Using a 3D Chemical Transport Model. <i>Environmental Science & Description (Model Science & Description (Model Science & Description (Model Science & Description (Model & Description (Model & Description)) (Model & Description (Model & Description)) (Model & Description) (Mode</i>	10.3	12
125	Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown. <i>Science of the Total Environment</i> , 2021 , 750, 142323	10.2	12
124	Distribution and emissions of trace elements in coal-fired power plants after ultra-low emission retrofitting. <i>Science of the Total Environment</i> , 2021 , 754, 142285	10.2	12
123	Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. <i>Journal of Environmental Sciences</i> , 2017 , 57, 383-39	6.4	11
122	Pyrolysis char derived from waste peat for catalytic reforming of tar model compound. <i>Applied Energy</i> , 2020 , 263, 114565	10.7	11
121	Sources of black carbon in the atmosphere and in snow in the Arctic. <i>Science of the Total Environment</i> , 2019 , 691, 442-454	10.2	11
120	Modeling the heterogeneous oxidation of elemental mercury by chlorine in flue gas. <i>Fuel</i> , 2020 , 262, 116506	7.1	11

119	Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 1056-1065	5.8	10
118	Development and case study of a science-based software platform to support policy making on air quality. <i>Journal of Environmental Sciences</i> , 2015 , 27, 97-107	6.4	10
117	Estimation of abatement potentials and costs of air pollution emissions in China. <i>Journal of Environmental Management</i> , 2020 , 260, 110069	7.9	10
116	A land use regression model of nitrogen dioxide and fine particulate matter in a complex urban core in Lanzhou, China. <i>Environmental Research</i> , 2019 , 177, 108597	7.9	10
115	Microenvironmental time-activity patterns in Chongqing, China. <i>Frontiers of Environmental Science and Engineering in China</i> , 2009 , 3, 200-209		10
114	Designation of Sulfur Dioxide and Acid Rain Pollution Control Zones and Its Impacts on Energy Industry in China <i>Journal of Chemical Engineering of Japan</i> , 2001 , 34, 1108-1113	0.8	10
113	Global health effects of future atmospheric mercury emissions. <i>Nature Communications</i> , 2021 , 12, 3035	17.4	10
112	Analysis of volatile organic compounds using cryogen-free thermal modulation based comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry. Journal of Chromatography A, 2019 , 1587, 227-238	4.5	10
111	Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. <i>Science of the Total Environment</i> , 2019 , 675, 176-183	10.2	9
110	Real-time source contribution analysis of ambient ozone using an enhanced meta-modeling approach over the Pearl River Delta Region of China. <i>Journal of Environmental Management</i> , 2020 , 268, 110650	7.9	9
109	Subtropical Forests Act as Mercury Sinks but as Net Sources of Gaseous Elemental Mercury in South China. <i>Environmental Science & Environmental Scienc</i>	10.3	9
108	Benefit of China's reduction in nitrogen oxides emission to natural ecosystems in East Asia with respect to critical load exceedance. <i>Environment International</i> , 2020 , 136, 105468	12.9	9
107	Impact of buildings on surface solar radiation over urban Beijing. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5841-5852	6.8	9
106	A Review on Adsorption Technologies for Mercury Emission Control. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2019 , 103, 155-162	2.7	9
105	Fossil fuel combustion and biomass burning sources of global black carbon from GEOS-Chem simulation and carbon isotope measurements. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 11545-1155	6.8	9
104	Airborne trace metals from coal combustion in Beijing. Air Quality, Atmosphere and Health, 2013 , 6, 157	-3,665	9
103	Toxic potency-adjusted control of air pollution for solid fuel combustion. <i>Nature Energy</i> ,	62.3	9
102	Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. <i>Lancet Planetary Health, The</i> , 2021 , 5, e808-e817	9.8	9

(2021-2019)

10	01	What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index. <i>Sustainability</i> , 2019 , 11, 4650	3.6	8	
1	00	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. <i>Journal of Environmental Sciences</i> , 2020 , 95, 99-110	6.4	8	
9:	9	Minamata Convention on Mercury: Chinese progress and perspectives. <i>National Science Review</i> , 2017 , 4, 677-679	10.8	8	
9	8	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China <i>Environmental Science & Environmental </i>	10.3	8	
9	7	Characteristics and Sources of Speciated Atmospheric Mercury at a Coastal Site in the East China Sea Region. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 2913-2923	4.6	8	
9	6	Non-negligible contributions to human health from increased household air pollution exposure during the COVID-19 lockdown in China. <i>Environment International</i> , 2021 , 158, 106918	12.9	8	
9.	5	Chemical deactivation of Selective Catalytic Reduction catalyst: Investigating the influence and mechanism of SeO2 poisoning. <i>Fuel</i> , 2020 , 269, 117435	7.1	8	
9.	4	Understand the local and regional contributions on air pollution from the view of human health impacts. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	8	
9.	3	Commodity plastic burning as a source of inhaled toxic aerosols. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125820	12.8	8	
9	2	Quantification of the enhancement of PM concentration by the downward transport of ozone from the stratosphere. <i>Chemosphere</i> , 2020 , 255, 126907	8.4	7	
9	1	Source and sectoral contribution analysis of PM based on efficient response surface modeling technique over Pearl River Delta Region of China. <i>Science of the Total Environment</i> , 2020 , 737, 139655	10.2	7	
9	О	Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China. <i>Science of the Total Environment</i> , 2018 , 618, 793-803	10.2	7	
8	9	Mercury emission and speciation from industrial gold production using roasting process. <i>Journal of Geochemical Exploration</i> , 2016 , 170, 72-77	3.8	7	
8	8	Combined solar power and storage as cost-competitive and grid-compatible supply for China's future carbon-neutral electricity system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7	
8	7	Mercury accumulation in soil from atmospheric deposition in temperate steppe of Inner Mongolia, China. <i>Environmental Pollution</i> , 2020 , 258, 113692	9.3	7	
8	6	Exploring deep learning for air pollutant emission estimation. <i>Geoscientific Model Development</i> , 2021 , 14, 4641-4654	6.3	7	
8	5	Personal exposure to PM in Chinese rural households in the Yangtze River Delta. <i>Indoor Air</i> , 2019 , 29, 403-412	5.4	7	
8.	4	Switching to electric vehicles can lead to significant reductions of PM2.5 and NO2 across China. <i>One Earth</i> , 2021 , 4, 1037-1048	8.1	7	

83	Potential environmental risk of trace elements in fly ash and gypsum from ultra-low emission coal-fired power plants in China. <i>Science of the Total Environment</i> , 2021 , 798, 149116	10.2	7
82	Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. <i>Environmental Pollution</i> , 2019 , 250, 1032-1043	9.3	6
81	Magnetic mineral constraint on lead isotope variations of coal fly ash and its implications for source discrimination. <i>Science of the Total Environment</i> , 2020 , 713, 136320	10.2	6
80	PM2.5 Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in China. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 636-643	4.6	6
79	Assessment of meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental meteorology index. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 29	9 9-3 01	3 ⁶
78	Health Benefits and Costs of Clean Heating Renovation: An Integrated Assessment in a Major Chinese City. <i>Environmental Science & Enp. Technology</i> , 2021 , 55, 10046-10055	10.3	6
77	China's greenhouse gas emissions for cropping systems from 1978-2016. <i>Scientific Data</i> , 2021 , 8, 171	8.2	6
76	Source Attribution for Mercury Deposition with an Updated Atmospheric Mercury Emission Inventory in the Pearl River Delta Region, China. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 13, 1	5.8	6
75	Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	6
74	Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. <i>Science of the Total Environment</i> , 2021 , 818, 151722	10.2	5
73	Gaseous and Particulate Chlorine Emissions From Typical Iron and Steel Industry in China. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032729	4.4	5
72	Data assimilation of ambient concentrations of multiple air pollutants using an emission-concentration response modeling framework. <i>Atmosphere</i> , 2020 , 11,	2.7	5
71	Role of emission controls in reducing the 2050 climate change penalty for PM in China. <i>Science of the Total Environment</i> , 2021 , 765, 144338	10.2	5
70	Enhanced mercury control but increased bromine and sulfur trioxides emissions after using bromine injection technology based on full-scale experiment. <i>Fuel</i> , 2021 , 285, 119130	7.1	5
69	Mapping the daily nitrous acid (HONO) concentrations across China during 2006-2017 through ensemble machine-learning algorithm. <i>Science of the Total Environment</i> , 2021 , 785, 147325	10.2	5
68	Determination of the stable carbon isotopic compositions of 2-methyltetrols for four forest areas in Southwest China: The implications for the [] values of atmospheric isoprene and C/C vegetation distribution. <i>Science of the Total Environment</i> , 2019 , 678, 780-792	10.2	4
67	Source influence on emission pathways and ambient PM_{2.5} pollution over India (2015 2 050) 2017 ,		4
66	Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019. <i>Environmental Science & Environmental Science </i>	10.3	4

65	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities <i>Science of the Total Environment</i> , 2021 , 152654	10.2	4
64	Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review		4
63	Wind-blown dust and its impacts on particulate matter pollution in northern China: current and future scenario. <i>Environmental Research Letters</i> ,	6.2	4
62	Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene. <i>Renewable Energy</i> , 2020 , 160, 964-973	8.1	4
61	N-stable isotope analysis of NH: An overview on analytical measurements, source sampling and its source apportionment. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 126	5.8	4
60	Predicting the Nonlinear Response of PM and Ozone to Precursor Emission Changes with a Response Surface Model. <i>Atmosphere</i> , 2021 , 12, 1-1044	2.7	4
59	Health Benefits of Emission Reduction under 1.5 LC Pathways Far Outweigh Climate-Related Variations in China. <i>Environmental Science & Environmental S</i>	10.3	4
58	Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China. <i>Environmental Pollution</i> , 2021 , 289, 117860	9.3	4
57	Optimization of a NO and VOC Cooperative Control Strategy Based on Clean Air Benefits <i>Environmental Science & Environmental Science & Environmental</i>	10.3	4
56	Diurnal variations of fossil and nonfossil carbonaceous aerosols in Beijing. <i>Atmospheric Environment</i> , 2015 , 122, 349-356	5.3	3
55	Air pollution complex: Understanding the sources, formation processes and health effects. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 1	5.8	3
54	Large-scale meteorological control on the spatial pattern of wintertime PM2.5 pollution over China. <i>Atmospheric Science Letters</i> , 2019 , 20, e938	2.4	3
53	Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces. <i>Environmental Research Letters</i> , 2017 , 12, 125008	6.2	3
52	Source contribution analysis of PM using Response Surface Model and Particulate Source Apportionment Technology over the PRD region, China. <i>Science of the Total Environment</i> , 2021 , 151757	10.2	3
51	Addressing Unresolved Complex Mixture of I/SVOCs Emitted From Incomplete Combustion of Solid Fuels by Nontarget Analysis. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD03583	54.4	3
50	Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources		3
49	Impacts of Coal Burning on Ambient PM _{2.5} Pollution in China 2016,		3
48	Impact of anthropogenic heat emissions on meteorological parameters and air quality in Beijing using a high-resolution model simulation. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	3

47	Highly Resolved Inventory of Mercury Release to Water from Anthropogenic Sources in China. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	3
46	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. <i>Environmental Pollution</i> , 2021 , 287, 117624	9.3	3
45	The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. <i>Environment International</i> , 2021 , 155, 106670	12.9	3
44	Measurement and minutely-resolved source apportionment of ambient VOCs in a corridor city during 2019 China International Import Expo episode. <i>Science of the Total Environment</i> , 2021 , 798, 1493	75 ^{0.2}	3
43	Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. <i>One Earth</i> , 2022 , 5, 403-412	8.1	3
42	Developing a statistical model to explain the observed decline of atmospheric mercury. <i>Atmospheric Environment</i> , 2020 , 243, 117868	5.3	2
41	A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region 2017 ,		2
40	Impacts of U.S. Carbon Tariffs on Chinal Foreign Trade and Social Welfare. Sustainability, 2019, 11, 5278	3.6	2
39	What Influences the Cross-Border Air Pollutant Transfer in Chinal Inited States Trade: A Comparative Analysis Using the Extended IO-SDA Method. <i>Sustainability</i> , 2019 , 11, 6252	3.6	2
38	Assessing the nonlinear response of fine particles to precursor emissions: development and application of an Extended Response Surface Modeling technique (ERSM v1.0) 2014 ,		2
37	Impact of biomass burning on haze pollution in the Yangtze River Delta, China: a case study in summer 2011		2
36	Global Economic Structure Transition Boosts Atmospheric Mercury Emissions in China. <i>Earthis Future</i> , 2021 , 9, e2021EF002076	7.9	2
35	Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation 2018 ,		2
34	Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models 2018 ,		2
33	Catalytic toluene steam reforming using Ni supported catalyst from pyrolytic peat. <i>Fuel Processing Technology</i> , 2021 , 224, 107032	7.2	2
32	The toxicity emissions and spatialized health risks of heavy metals in PM2.5 from biomass fuels burning. <i>Atmospheric Environment</i> , 2022 , 119178	5.3	2
31	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017 2019 ,		1
30	Air Pollution and Lung Cancer Risks 2019 , 29-40		1

29	Assessing the impact of Clean Air Action Plan on Air Quality Trends in Beijing Megacity using a machine learning technique 2019 ,		1
28	Impacts of Anthropogenic Emissions and Meteorological Variation on Hg Wet Deposition in Chongming, China. <i>Atmosphere</i> , 2020 , 11, 1301	2.7	1
27	Updated atmospheric mercury emissions from iron and steel production in China during 2000\(\textit{D}\)015 2017 ,		1
26	Development and case study of a new-generation model-VAT for analyzing the boundary conditions influence on atmospheric mercury simulation. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	1
25	Ensemble Predictions of Air Pollutants in China in 2013 for Health Effects Studies Using WRF/CMAQ Modeling System with Four Emission Inventories 2017 ,		1
24	Significant Contribution of Coarse Black Carbon Particles to Light Absorption in North China Plain. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 134-139	11	1
23	Impacts of Removal Compensation Effect on the Mercury Emission Inventories for Nonferrous Metal (Zinc, Lead, and Copper) Smelting in China <i>Environmental Science & Emp; Technology</i> , 2022 ,	10.3	1
22	Improvements of response surface modeling with self-adaptive machine learning method for PM and O predictions. <i>Journal of Environmental Management</i> , 2021 , 303, 114210	7.9	1
21	Mercury Speciation and Fine Particle Size Distribution on Combustion of Chinese Coals 2013 , 313-321		1
20	Modeling Biogenic and Anthropogenic Secondary Organic Aerosol in China 2016 ,		1
20	Modeling Biogenic and Anthropogenic Secondary Organic Aerosol in China 2016 , Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113	3.6	1
	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China	3.6	1
19	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113 Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and		1
19	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113 Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and hydrothermal resistance. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124427 The influence of spatiality on shipping emissions, air quality and potential human exposure in		1
19 18 17	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113 Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and hydrothermal resistance. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124427 The influence of spatiality on shipping emissions, air quality and potential human exposure in Yangtze River Delta/Shanghai, China 2018 , High efficiency of livestock ammonia emission controls on alleviating particulate nitrate during a		1 1 1
19 18 17 16	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113 Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and hydrothermal resistance. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124427 The influence of spatiality on shipping emissions, air quality and potential human exposure in Yangtze River Delta/Shanghai, China 2018 , High efficiency of livestock ammonia emission controls on alleviating particulate nitrate during a severe winter haze episode in northern China 2018 , Critical loads of headwater streams in China using SSWC model modified by comprehensive	12.8	1 1 1
19 18 17 16	Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. <i>Sustainability</i> , 2019 , 11, 7113 Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg oxidation activity and hydrothermal resistance. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124427 The influence of spatiality on shipping emissions, air quality and potential human exposure in Yangtze River Delta/Shanghai, China 2018 , High efficiency of livestock ammonia emission controls on alleviating particulate nitrate during a severe winter haze episode in northern China 2018 , Critical loads of headwater streams in China using SSWC model modified by comprehensive F-factor. <i>Science of the Total Environment</i> , 2022 , 802, 149780 Air pollutant emissions induced by rural-to-urban migration during China's urbanization	10.2	1 1 1 1 1

11	Mercury emission characteristics and mechanism in the raw mill system of cement clinker production. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128403	12.8	O
10	Mimicking atmospheric photochemical modelling with a deep neural network. <i>Atmospheric Research</i> , 2022 , 265, 1-11	5.4	0
9	Effect of the Coal Preparation Process on Mercury Flows and Emissions in Coal Combustion Systems. <i>Environmental Science & Environmental Science & Env</i>	10.3	О
8	New region demarcation method for implementing the Joint Prevention and Control of Atmospheric Pollution policy in China. <i>Journal of Cleaner Production</i> , 2021 , 325, 129345	10.3	O
7	Polar organic aerosol tracers in two areas in Beijing-Tianjin-Hebei region: Concentration comparison before and in the sept. Third Parade and sources. <i>Environmental Pollution</i> , 2021 , 270, 11610	8 ^{.3}	0
6	Surface modification of TiO2 particles with 12-hydroxy stearic acid and the effect of particle size on the mechanical and thermal properties of thermoplastic polyurethane urea elastomers. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 49898	2.9	O
5	Role of black carbon in modulating aerosol direct effects driven by air pollution controls during 2013-2017 in China <i>Science of the Total Environment</i> , 2022 , 154928	10.2	O
4	The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 5147-5156	6.8	O
3	Comprehensive chemical characterization of gaseous I/SVOC emissions from heavy-duty diesel vehicles using two-dimensional gas chromatography time-of-flight mass spectrometry <i>Environmental Pollution</i> , 2022 , 119284	9.3	О
2	Impacts of large-scale deployment of mountainous wind farms on wintertime regional air quality in the Beijing-Tian-Hebei area. <i>Atmospheric Environment</i> , 2022 , 278, 119074	5.3	
1	Response surface model based emission source contribution and meteorological pattern analysis in ozone polluted days <i>Environmental Pollution</i> , 2022 , 119459	9.3	