
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263663/publications.pdf Version: 2024-02-01

AKIDA KOBAVASHI

#	Article	IF	CITATIONS
1	NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway with cholesterol uptake and lipogenesis inhibition. IScience, 2021, 24, 103180.	1.9	12
2	Pathophysiological Potentials of NRF3-Regulated Transcriptional Axes in Protein and Lipid Homeostasis. International Journal of Molecular Sciences, 2021, 22, 12686.	1.8	5
3	Roles of NRF3 in the Hallmarks of Cancer: Proteasomal Inactivation of Tumor Suppressors. Cancers, 2020, 12, 2681.	1.7	23
4	NFE2L1 and NFE2L3 Complementarily Maintain Basal Proteasome Activity in Cancer Cells through CPEB3-Mediated Translational Repression. Molecular and Cellular Biology, 2020, 40, .	1.1	31
5	NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Molecular and Cellular Biology, 2020, 40, .	1.1	33
6	New addiction to the NRF2â€related factor NRF3 in cancer cells: Ubiquitinâ€independent proteolysis through the 20S proteasome. Cancer Science, 2020, 111, 6-14.	1.7	28
7	β-Catenin/TCF4 Complex-Mediated Induction of the NRF3 (NFE2L3) Gene in Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 3344.	1.8	25
8	<i>O</i> -GlcNAcylation Signal Mediates Proteasome Inhibitor Resistance in Cancer Cells by Stabilizing NRF1. Molecular and Cellular Biology, 2018, 38, .	1.1	43
9	Possible roles of the transcription factor Nrf1 (NFE2L1) in neural homeostasis by regulating the gene expression of deubiquitinating enzymes. Biochemical and Biophysical Research Communications, 2017, 484, 176-183.	1.0	14
10	Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Scientific Reports, 2017, 7, 12494.	1.6	61
11	The cysteine-rich domain of TET2 binds preferentially to mono- and dimethylated histone H3K36. Journal of Biochemistry, 2017, 161, mvx004.	0.9	6
12	NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. Journal of Cell Science, 2016, 129, 2382-93.	1.2	65
13	USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression. Biochemical and Biophysical Research Communications, 2016, 478, 363-370.	1.0	20
14	Constitutive activation of Drosophila CncC transcription factor reduces lipid formation in the fat body. Biochemical and Biophysical Research Communications, 2015, 463, 693-698.	1.0	27
15	Inhibitory Mechanism of FAT4 Gene Expression in Response to Actin Dynamics during Src-Induced Carcinogenesis. PLoS ONE, 2015, 10, e0118336.	1.1	46
16	The Casein Kinase 2-Nrf1 Axis Controls the Clearance of Ubiquitinated Proteins by Regulating Proteasome Gene Expression. Molecular and Cellular Biology, 2013, 33, 3461-3472.	1.1	50
17	Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes To Cells, 2011, 16, 692-703.	0.5	90
18	Dual Regulation of the Transcriptional Activity of Nrf1 by β-TrCP- and Hrd1-Dependent Degradation Mechanisms. Molecular and Cellular Biology, 2011, 31, 4500-4512.	1.1	91

#	Article	IF	CITATIONS
19	The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology, 2010, 12, 213-223.	4.6	1,933
20	Crucial Role of Nrf3 in Smooth Muscle Cell Differentiation From Stem Cells. Circulation Research, 2010, 106, 870-879.	2.0	75
21	The Nrf3 Transcription Factor Is a Membrane-bound Glycoprotein Targeted to the Endoplasmic Reticulum through Its N-terminal Homology Box 1 Sequence. Journal of Biological Chemistry, 2009, 284, 3195-3210.	1.6	65
22	Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1. Journal of Synchrotron Radiation, 2008, 15, 273-276.	1.0	28
23	Carnosic acid, a <i>catecholâ€type</i> electrophilic compound, protects neurons both <i>in vitro</i> and <i>in vivo</i> through activation of the Keap1/Nrf2 pathway via <i>Sâ€</i> alkylation of targeted cysteines on Keap1. Journal of Neurochemistry, 2008, 104, 1116-1131.	2.1	339
24	Keap1 Regulates the Constitutive Expression of GST A1 during Differentiation of Caco-2 Cells. Biochemistry, 2008, 47, 6169-6177.	1.2	18
25	Nrf1 and Nrf2 Play Distinct Roles in Activation of Antioxidant Response Element-dependent Genes. Journal of Biological Chemistry, 2008, 283, 33554-33562.	1.6	275
26	Loss of Keap1 Function Activates Nrf2 and Provides Advantages for Lung Cancer Cell Growth. Cancer Research, 2008, 68, 1303-1309.	0.4	559
27	Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity. Molecular and Cellular Biology, 2008, 28, 2758-2770.	1.1	441
28	Hepatocyte-Specific Deletion of Heme Oxygenase-1 Disrupts Redox Homeostasis in Basal and Oxidative Environments. Tohoku Journal of Experimental Medicine, 2008, 216, 331-339.	0.5	30
29	Different Electrostatic Potentials Define ETGE and DLG Motifs as Hinge and Latch in Oxidative Stress Response. Molecular and Cellular Biology, 2007, 27, 7511-7521.	1.1	370
30	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	13.5	1,925
31	Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nature Chemical Biology, 2007, 3, 727-735.	3.9	249
32	Subcellular localization and cytoplasmic complex status of endogenous Keap1. Genes To Cells, 2007, 12, 1163-1178.	0.5	116
33	Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1. Molecular and Cellular Biology, 2006, 26, 221-229.	1.1	775
34	Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biological Chemistry, 2006, 387, 1311-20.	1.2	397
35	Ebselen, a Seleno-organic Antioxidant, as an Electrophile. Chemical Research in Toxicology, 2006, 19, 1196-1204.	1.7	135
36	Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochemical and Biophysical Research Communications, 2006, 339, 79-88.	1.0	356

#	Article	IF	CITATIONS
37	Structural Basis for Defects of Keap1 Activity Provoked by Its Point Mutations in Lung Cancer. Molecular Cell, 2006, 21, 689-700.	4.5	631
38	Purification, crystallization and preliminary X-ray diffraction analysis of the Kelch-like motif region of mouse Keap1. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 153-155.	0.7	16
39	Selective Induction of the Tumor Marker Glutathione S-Transferase P1 by Proteasome Inhibitors*. Journal of Biological Chemistry, 2005, 280, 25267-25276.	1.6	29
40	Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Archives of Biochemistry and Biophysics, 2005, 433, 342-350.	1.4	187
41	Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2040-2045.	3.3	895
42	Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2046-2051.	3.3	466
43	Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2. Molecular and Cellular Biology, 2004, 24, 7130-7139.	1.1	1,878
44	Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochemical and Biophysical Research Communications, 2004, 321, 72-79.	1.0	122
45	Unique Function of the Nrf2–Keap1 Pathway in the Inducible Expression of Antioxidant and Detoxifying Enzymes. Methods in Enzymology, 2004, 378, 273-286.	0.4	212
46	Functional Analysis of Basic Transcription Element Binding Protein by Gene Targeting Technology. Molecular and Cellular Biology, 2003, 23, 2489-2500.	1.1	69
47	Oxidative Stress Abolishes Leptomycin B-sensitive Nuclear Export of Transcription Repressor Bach2 That Counteracts Activation of Maf Recognition Element. Journal of Biological Chemistry, 2000, 275, 15370-15376.	1.6	91
48	A Combinatorial Code for Gene Expression Generated by Transcription Factor Bach2 and MAZR (MAZ-Related Factor) through the BTB/POZ Domain. Molecular and Cellular Biology, 2000, 20, 1733-1746.	1.1	105
49	Cloning of a Coproporphyrinogen Oxidase Promoter Regulatory Element Binding Protein. Biochemical and Biophysical Research Communications, 2000, 273, 596-602.	1.0	15
50	Molecular Cloning and Functional Characterization of a New Cap'n' Collar Family Transcription Factor Nrf3. Journal of Biological Chemistry, 1999, 274, 6443-6452.	1.6	254
51	Basic Transcription Element-binding Protein (BTEB) Is a Thyroid Hormone-regulated Gene in the Developing Central Nervous System. Journal of Biological Chemistry, 1999, 274, 23128-23134.	1.6	119
52	Application of a manifold system for temporary reperfusion during proximal anastomoses in conventional coronary bypass surgery. Surgery Today, 1999, 29, 973-974.	0.7	0
53	Translocation of pl Cln in a pig kidney cell line, LLC-PK1, by low osmotic stress. Clinical and Experimental Nephrology, 1999, 3, 163-168.	0.7	1
54	Expression of pIClninEscherichia coligives a strong tolerance to hypotonic stress. FEBS Letters, 1998, 434, 28-32.	1.3	4

#	ARTICLE	IF	CITATIONS
55	Transcriptionally Active Heterodimer Formation of an Arnt-like PAS Protein, Arnt3, with HIF-1a, HLF, and Clock. Biochemical and Biophysical Research Communications, 1998, 248, 789-794.	1.0	128
56	Structure and Expression of the Mouse AhR Nuclear Translocator (mArnt) Gene. Journal of Biological Chemistry, 1998, 273, 24867-24873.	1.6	23
57	Surgical Treatment for Biliary Carcinoma Arising After Pancreatoduodenectomy. HPB Surgery, 1998, 10, 395-397.	2.2	7
58	Differential Regulation of Coproporphyrinogen Oxidase Gene Between Erythroid and Nonerythroid Cells. Blood, 1998, 92, 3436-3444.	0.6	38
59	A point Mutation Responsible for Defective Function of the Aryl-Hydrocarbon-Receptor Nuclear Translocator in Mutant Hepa-1c1c7 Cells. FEBS Journal, 1997, 246, 486-495.	0.2	63
60	Purification and characterization of two novel and kidney-specific proteins related to aminoacylase-1 and lambda-crystallin. Clinical and Experimental Nephrology, 1997, 1, 266-272.	0.7	0
61	Cooperative Interaction between AhR·Arnt and Sp1 for the Drug-inducible Expression of CYP1A1 Gene. Journal of Biological Chemistry, 1996, 271, 12310-12316.	1.6	139
62	Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1936-1940.	3.3	175
63	Analysis of Functional Domains of a GC Box-Binding Protein, BTEB1. Journal of Biochemistry, 1995, 117, 91-95.	0.9	31
64	ROLE OF PGE1 IN LIVING RELATED LIVER TRANSPLANTATION. The Journal of the Japanese Practical Surgeon Society, 1993, 54, 2139-2143.	0.0	0
65	Regional Cerebral Blood Flow and Oxygen Metabolism in Normal Pressure Hydrocephalus after Subarachnoid Hemorrhage. Neurologia Medico-Chirurgica, 1989, 29, 382-388.	1.0	22
66	Effects of L-carnitine on exercise tolerance in patients with stable angina pectoris International Heart Journal, 1984, 25, 587-597.	0.6	37