
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263642/publications.pdf Version: 2024-02-01

YEONHWA DADK

#	Article	IF	CITATIONS
1	The Nrf2a pathway impacts zebrafish offspring development with maternal preconception exposure to perfluorobutanesulfonic acid. Chemosphere, 2022, 287, 132121.	8.2	6
2	Membrane polarization in non-neuronal cells as a potential mechanism of metabolic disruption by depolarizing insecticides. Food and Chemical Toxicology, 2022, 160, 112804.	3.6	3
3	Permethrin inhibits tube formation and viability of endothelial cells. Journal of the Science of Food and Agriculture, 2022, , .	3.5	1
4	Transcriptome analysis provides insight into deltamethrin-induced fat accumulation in 3T3-L1 adipocytes. Pesticide Biochemistry and Physiology, 2022, 184, 105114.	3.6	2
5	Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). Aquatic Toxicology, 2022, 249, 106219.	4.0	2
6	Azelaic Acid Promotes Caenorhabditis elegans Longevity at Low Temperature Via an Increase in Fatty Acid Desaturation. Pharmaceutical Research, 2021, 38, 15-26.	3.5	5
7	Curcumin reduced fat accumulation in Caenorhabditis elegans. Current Research in Food Science, 2021, 4, 551-556.	5.8	8
8	Effect of encapsulated edible halophyte with different biopolymers on the inhibition of sodium absorption in mouse. Food Science and Nutrition, 2021, 9, 1972-1979.	3.4	0
9	Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. Environmental Pollution, 2021, 275, 116644.	7.5	29
10	Maternal preconception PFOS exposure of Drosophila melanogaster alters reproductive capacity, development, morphology and nutrient regulation. Food and Chemical Toxicology, 2021, 151, 112153.	3.6	11
11	Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients, 2021, 13, 1881.	4.1	4
12	Methylglyoxal influences development of Caenorhabditis elegans via lin-41-dependent pathway. Food and Chemical Toxicology, 2021, 152, 112238.	3.6	1
13	Caenorhabditis elegans as a model for obesity research. Current Research in Food Science, 2021, 4, 692-697.	5.8	18
14	Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food Chemistry, 2020, 307, 125537.	8.2	19
15	Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Current Research in Food Science, 2020, 2, 70-76.	5.8	16
16	Butein inhibits lipogenesis in <scp><i>Caenorhabditis elegans</i></scp> . BioFactors, 2020, 46, 777-787.	5.4	6
17	Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 2020, 145, 111695.	3.6	30
18	Kahweol Reduces Food Intake of <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 9683-9689.	5.2	6

#	Article	IF	CITATIONS
19	Perfluorobutanesulfonic acid (PFBS) induces fat accumulation in HepG2 human hepatoma. Toxicological and Environmental Chemistry, 2020, 102, 585-606.	1.2	7
20	Piceatannol attenuates fat accumulation and oxidative stress in steatosis-induced HepG2 cells. Current Research in Food Science, 2020, 3, 92-99.	5.8	23
21	How To Stabilize ω-3 Polyunsaturated Fatty Acids (PUFAs) in an Animal Feeding Study?—Effects of the Temperature, Oxygen Level, and Antioxidant on Oxidative Stability of ω-3 PUFAs in a Mouse Diet. Journal of Agricultural and Food Chemistry, 2020, 68, 13146-13153.	5.2	10
22	Effects of Linoleic Acid-Rich Diet on Plasma Profiles of Eicosanoids and Development of Colitis in <i>II</i> -10 ^{–/–} Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 7641-7647.	5.2	6
23	<i>C. elegans</i> <scp>ACAT</scp> regulates lipolysis and its related lifespan in fasting through modulation of the genes in lipolysis and insulin/ <scp>IGF</scp> â€4 signaling. BioFactors, 2020, 46, 754-765.	5.4	20
24	Per- and polyfluoroalkyl substances and obesity, type 2 diabetes and non-alcoholic fatty liver disease: a review of epidemiologic findings. Toxicological and Environmental Chemistry, 2020, 102, 1-36.	1.2	47
25	Conjugated linoleic acid (CLA) regulates female reproduction via sex pheromone regulation without affecting larval development in Drosophila melanogaster. Food and Life, 2020, 2020, 37-45.	0.5	0
26	Development of effective heparin extraction method from pig by-products and analysis of their bioavailability. Journal of Animal Science and Technology, 2020, 62, 933-947.	2.5	6
27	<i>p</i> â€Coumaric acid improves oxidative and osmosis stress responses in <i>Caenorhabditis elegans</i> . Journal of the Science of Food and Agriculture, 2019, 99, 1190-1197.	3.5	30
28	Mechanisms of action of coffee bioactive components on lipid metabolism. Food Science and Biotechnology, 2019, 28, 1287-1296.	2.6	41
29	<i>trans</i> -Trismethoxy resveratrol decreased fat accumulation dependent on <i>fat-6</i> and <i>fat-7</i> in <i>Caenorhabditis elegans</i> . Food and Function, 2019, 10, 4966-4974.	4.6	27
30	Thermally Processed Oil Exaggerates Colonic Inflammation and Colitis-Associated Colon Tumorigenesis in Mice. Cancer Prevention Research, 2019, 12, 741-750.	1.5	18
31	Deltamethrin promotes adipogenesis via AMPKα and ER stress-mediated pathway in 3T3- L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 2019, 134, 110791.	3.6	21
32	lvermectin decreases triglyceride accumulation by inhibiting adipogenesis of 3T3-L1 preadipocytes. Food and Chemical Toxicology, 2019, 131, 110576.	3.6	7
33	Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway. Journal of Functional Foods, 2019, 59, 8-15.	3.4	15
34	Epigallocatechin gallate (EGCG) alters body fat and lean mass through sex-dependent metabolic mechanisms in <i>Drosophila melanogaster</i> . International Journal of Food Sciences and Nutrition, 2019, 70, 959-969.	2.8	5
35	AAK-2 and SKN-1 Are Involved in Chicoric-Acid-Induced Lifespan Extension in <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9178-9186.	5.2	30
36	The Bioactive Effects of Chicoric Acid As a Functional Food Ingredient. Journal of Medicinal Food, 2019, 22, 645-652.	1.5	49

#	Article	IF	CITATIONS
37	Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: Demonstration of curcumin bioaccumulation and body-fat reduction. Food Research International, 2019, 120, 157-166.	6.2	23
38	Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food and Chemical Toxicology, 2019, 125, 595-604.	3.6	36
39	Conjugated Linoleic Acid in Human Health: Effects on Weight Control. , 2019, , 355-382.		7
40	Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids. Lipids, 2018, 53, 271-278.	1.7	20
41	<i>Caenorhabditis elegans</i> : A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annual Review of Food Science and Technology, 2018, 9, 1-22.	9.9	101
42	Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 2018, 249, 193-201.	8.2	30
43	Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5283-5288.	7.1	59
44	A living model for obesity and aging research: <i>Caenorhabditis elegans</i> . Critical Reviews in Food Science and Nutrition, 2018, 58, 741-754.	10.3	109
45	Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice. Food and Chemical Toxicology, 2018, 111, 405-416.	3.6	51
46	Comprehensive in vitro and in vivo risk assessments of chitosan microparticles using human epithelial cells and Caenorhabditis elegans. Journal of Hazardous Materials, 2018, 341, 248-256.	12.4	25
47	Epigallocatechin-3-Gallate Reduces Fat Accumulation in Caenorhabditis elegans. Preventive Nutrition and Food Science, 2018, 23, 214-219.	1.6	16
48	Conjugated Linoleic Acid Regulates Body Composition and Locomotor Activity in a Sexâ€Dependent Manner in Drosophila melanogaster. Lipids, 2018, 53, 825-834.	1.7	3
49	Permethrin, a pyrethroid insecticide, regulates ERK1/2 activation through membrane depolarization-mediated pathway in HepC2 hepatocytes. Food and Chemical Toxicology, 2018, 121, 387-395.	3.6	11
50	Insecticide Exposure and Development of Nonalcoholic Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 2018, 66, 10132-10138.	5.2	16
51	Nutrient Accumulation in Faba Bean Varieties. Communications in Soil Science and Plant Analysis, 2018, 49, 2064-2073.	1.4	22
52	Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes. Food and Chemical Toxicology, 2018, 120, 340-345.	3.6	38
53	Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. Journal of Functional Foods, 2018, 48, 586-593.	3.4	29
54	Application of Caenorhabditis elegans for Research on Endoplasmic Reticulum Stress. Preventive Nutrition and Food Science, 2018, 23, 275-281.	1.6	8

#	Article	IF	CITATIONS
55	Piceatannol extends the lifespan of <scp><i>C</i></scp> <i>aenorhabditis elegans</i> via DAFâ€16. BioFactors, 2017, 43, 379-387.	5.4	41
56	Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and Chemical Toxicology, 2017, 101, 149-156.	3.6	42
57	3,3′-Diindolylmethane Suppresses Adipogenesis Using AMPK <i>α</i> -Dependent Mechanism in 3T3-L1 Adipocytes and <i>Caenorhabditis elegans</i> . Journal of Medicinal Food, 2017, 20, 646-652.	1.5	11
58	Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food and Chemical Toxicology, 2017, 105, 456-474.	3.6	52
59	4,4′â€Ðichlorodiphenyltrichloroethane (<scp>DDT</scp>) and 4,4′â€dichlorodiphenyldichloroethylene (<scp>DDE</scp>) inhibit myogenesis in <scp>C2C12</scp> myoblasts. Journal of the Science of Food and Agriculture, 2017, 97, 5176-5185.	3.5	5
60	Overview of conjugated linoleic acid formation and accumulation in animal products. Livestock Science, 2017, 195, 105-111.	1.6	40
61	Lipidomic profiling of highâ€fat dietâ€induced obesity in mice: Importance of cytochrome P450â€derived fatty acid epoxides. Obesity, 2017, 25, 132-140.	3.0	34
62	Piceatannol Reduces Fat Accumulation in <i>Caenorhabditis elegans</i> . Journal of Medicinal Food, 2017, 20, 887-894.	1.5	27
63	Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes. Food and Chemical Toxicology, 2017, 109, 123-129.	3.6	27
64	Environmental pollutants and type 2 diabetes: a review of human studies. Toxicological and Environmental Chemistry, 2017, 99, 1283-1303.	1.2	20
65	Effect of the Composition and Structure of Excipient Emulsion on the Bioaccessibility of Pesticide Residue in Agricultural Products. Journal of Agricultural and Food Chemistry, 2017, 65, 9128-9138.	5.2	19
66	Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKI±-Mediated Pathway. Journal of Agricultural and Food Chemistry, 2017, 65, 6572-6581.	5.2	51
67	Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food and Chemical Toxicology, 2017, 108, 161-170.	3.6	33
68	Improving yield and mineral nutrient concentration of potato tubers through cover cropping. Field Crops Research, 2017, 212, 45-51.	5.1	27
69	ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice. Journal of Nutritional Biochemistry, 2017, 48, 29-35.	4.2	31
70	Confocal fluorescence mapping of pH profile inside hydrogel beads (microgels) with controllable internal pH values. Food Hydrocolloids, 2017, 65, 198-205.	10.7	25
71	Permethrin decreased insulin-stimulated AKT phosphorylation dependent on extracellular signal-regulated kinase-1 (ERK), but not AMP-activated protein kinase α (AMPKα), in C2C12 myotubes. Food and Chemical Toxicology, 2017, 109, 95-101.	3.6	15
72	Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adultâ€onset inactivity induced obese mice. European Journal of Lipid Science and Technology, 2016, 118, 1305-1316.	1.5	9

#	Article	IF	CITATIONS
73	Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes. Food and Chemical Toxicology, 2016, 92, 217-223.	3.6	48
74	Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice. Journal of Nutritional Biochemistry, 2016, 38, 125-133.	4.2	19
75	Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 9293-9306.	5.2	83
76	Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2093-2099.	1.3	20
77	Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Biotechnology for Biofuels, 2016, 9, 136.	6.2	53
78	4,4′-Dichlorodiphenyltrichloroethane (DDT) and 4,4′-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture. Pesticide Biochemistry and Physiology, 2016, 131, 40-45.	3.6	55
79	Cranberry Product Decreases Fat Accumulation in <i>Caenorhabditis elegans</i> . Journal of Medicinal Food, 2016, 19, 427-433.	1.5	44
80	Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems. Food Chemistry, 2016, 202, 451-457.	8.2	33
81	Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids, 2016, 51, 159-178.	1.7	33
82	Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annual Review of Food Science and Technology, 2016, 7, 221-244.	9.9	177
83	Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions. Food Chemistry, 2016, 197, 1130-1135.	8.2	38
84	Conjugated Linoleic Acid and Postmenopausal Women's Health. Journal of Food Science, 2015, 80, R1137-43.	3.1	7
85	Effects of Postweaning Administration of Conjugated Linoleic Acid on Development of Obesity in Nescient Basic Helix–Loop–Helix 2 Knockout Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 5212-5223.	5.2	8
86	Conjugated Linoleic Acid (CLA) Stimulates Mitochondrial Biogenesis Signaling by the Upregulation of PPARγ Coactivator 1α (PGCâ€1α) in C2C12 Cells. Lipids, 2015, 50, 329-338.	1.7	29
87	Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chemistry, 2015, 167, 438-446.	8.2	45
88	ATF3 Mediates Anti-Cancer Activity of Trans-10, cis-12-Conjugated Linoleic Acid in Human Colon Cancer Cells. Biomolecules and Therapeutics, 2015, 23, 134-140.	2.4	21
89	A Pyrethroid Pesticide, Permethrin, Alters Lipid Metabolism and Voluntary Activities in Mice. FASEB Journal, 2015, 29, 776.2.	0.5	2
90	Effects of Imidacloprid on Myogenesis in C2C12 Myoblasts. FASEB Journal, 2015, 29, 612.5.	0.5	0

#	Article	IF	CITATIONS
91	Effects of Early Administration of Conjugated Linoleic Acid on Development of Obesity in NescientBasic Helix‣oopâ€Helix 2 Knockout Mice. FASEB Journal, 2015, 29, 608.19.	0.5	0
92	Permethrin Alters Adipogenesis in 3T3‣1 Adipocytes and Causes Insulin Resistance in C2C12 Myotubes. Journal of Biochemical and Molecular Toxicology, 2014, 28, 418-424.	3.0	53
93	Conjugated Linoleic Acid in Human Health Effects on Weight Control. , 2014, , 429-446.		7
94	trans-10,cis-12 CLA promotes osteoblastogenesis via SMAD mediated mechanism in bone marrow mesenchymal stem cells. Journal of Functional Foods, 2014, 8, 367-376.	3.4	17
95	Permethrin, a pyrethroid insecticide, impairs insulinâ€stimulated glucose uptake in C2C12 myotubes (1142.7). FASEB Journal, 2014, 28, 1142.7.	0.5	0
96	Conjugated linoleic acid and calcium co-supplementation improves bone health in ovariectomised mice. Food Chemistry, 2013, 140, 280-288.	8.2	22
97	Dietary conjugated nonadecadienoic acid prevents adult-onset obesity in nescient basic helix–loop–helix 2 knockout mice. Journal of Nutritional Biochemistry, 2013, 24, 556-566.	4.2	9
98	trans-10,cis-12 Conjugated linoleic acid promotes bone formation by inhibiting adipogenesis by peroxisome proliferator activated receptor-Î ³ -dependent mechanisms and by directly enhancing osteoblastogenesis from bone marrow mesenchymal stem cells. Journal of Nutritional Biochemistry, 2013, 24, 672-679.	4.2	20
99	Imidacloprid, a Neonicotinoid Insecticide, Potentiates Adipogenesis in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry, 2013, 61, 255-259.	5.2	74
100	Imidacloprid, a neonicotinoid insecticide, induces insulin resistance. Journal of Toxicological Sciences, 2013, 38, 655-660.	1.5	39
101	Permethrin, a pyrethroid insecticide, potentiates adipogenesis in 3T3â€L1 adipocytes. FASEB Journal, 2013, 27, 1071.1.	0.5	0
102	Conjugated linoleic acid (CLA) activates PGCâ€lalpha via AMPK and SIRT1 in C2C12 myotubes. FASEB Journal, 2013, 27, 637.25.	0.5	1
103	Organochlorine insecticides potentiate adipogenesis in 3T3‣1 adipocytes. FASEB Journal, 2013, 27, 1071.4.	0.5	0
104	Imidacloprid induces insulin resistance by protein kinase B (PKB) mediated mechanism. FASEB Journal, 2013, 27, 1169.16.	0.5	0
105	Preventive effects of cranberry products on animal model of colitis. FASEB Journal, 2013, 27, lb398.	0.5	0
106	Preventive effects of conjugated linoleic acid on obesity by improved physical activity in nescient basic helix-loop-helix 2 knockout mice during growth period. Food and Function, 2012, 3, 1280.	4.6	9
107	Implication of Conjugated Linoleic Acid (CLA) in Human Health. Critical Reviews in Food Science and Nutrition, 2012, 52, 488-513.	10.3	321
108	Modulation of lipid digestibility using structured emulsion-based delivery systems: Comparison of in vivo and in vitro measurements. Food and Function, 2012, 3, 528.	4.6	46

YEONHWA PARK

#	Article	IF	CITATIONS
109	trans-10,cis-12 Conjugated Linoleic Acid Enhances Endurance Capacity by Increasing Fatty Acid Oxidation and Reducing Glycogen Utilization in Mice. Lipids, 2012, 47, 855-863.	1.7	32
110	Conjugated Fatty Acids as a Prevention Tool for Obesity and Osteoporosis. ACS Symposium Series, 2012, , 393-405.	0.5	0
111	Dietary Influences on Nonexercise Physical Activity and Energy Expenditure in C57BL/6J Mice. Journal of Food Science, 2012, 77, H63-8.	3.1	7
112	Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice. Food Chemistry, 2012, 133, 400-409.	8.2	22
113	Food Components with Anti-Obesity Effect. Annual Review of Food Science and Technology, 2011, 2, 237-257.	9.9	37
114	Interaction between dietary conjugated linoleic acid and calcium supplementation affecting bone and fat mass. Journal of Bone and Mineral Metabolism, 2011, 29, 268-278.	2.7	22
115	Inhibitory effect of t 10 c 12 conjugated linoleic acid (CLA) isomer on clozapine induced adipogenesis in 3T3â€L1 cells. FASEB Journal, 2011, 25, lb288.	0.5	0
116	Neonicotinoid insecticide imidacloprid impairs lipid metabolism in 3T3‣1 cells. FASEB Journal, 2011, 25, lb300.	0.5	0
117	Effects of dietary conjugated linoleic acid (CLA) on spontaneously hypertensive rats. Journal of Functional Foods, 2010, 2, 54-59.	3.4	11
118	Conjugated nonadecadienoic acid is more potent than conjugated linoleic acid on body fat reduction. Journal of Nutritional Biochemistry, 2010, 21, 764-773.	4.2	20
119	Healthier meat products as functional foods. Meat Science, 2010, 86, 49-55.	5.5	170
120	transâ€10,cisâ€12 CLA suppresses osteosarcoma cells via phosphoinositide 3â€kinase pathway. FASEB Journal, 2010, 24, lb381.	0.5	0
121	Effects of conjugated linoleic acid (CLA) on calcium homeostasis in ovariectomized mice. FASEB Journal, 2010, 24, lb377.	0.5	2
122	Effects of <i>trans</i> -10, <i>cis</i> -12 Conjugated Linoleic Acid on Body Composition in Genetically Obese Mice. Journal of Medicinal Food, 2009, 12, 56-63.	1.5	12
123	Conjugated linoleic acid (CLA): Good or bad trans fat?. Journal of Food Composition and Analysis, 2009, 22, S4-S12.	3.9	115
124	Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Critical Reviews in Food Science and Nutrition, 2009, 49, 577-606.	10.3	788
125	Comparison of conjugated linoleic acid (CLA) and conjugated nonadecadienoic acid (CNA) with regard to lipid metabolism in mice. FASEB Journal, 2009, 23, 717.30.	0.5	0
126	Effect of Conjugated Linoleic Acid (CLA) on Tumor Suppression in Canine Osteosarcoma Cells. FASEB Journal, 2009, 23, LB501.	0.5	0

#	Article	IF	CITATIONS
127	Designing Food Structure to Control Stability, Digestion, Release and Absorption of Lipophilic Food Components. Food Biophysics, 2008, 3, 219-228.	3.0	179
128	Cosupplementation of Dietary Calcium and Conjugated Linoleic Acid (CLA) Improves Bone Mass in Mice. Journal of Food Science, 2008, 73, C556-60.	3.1	26
129	Modulation of cholesterol metabolism by Ginkgo biloba L. nuts and their extract. Food Research International, 2008, 41, 89-95.	6.2	24
130	Controlling Lipid Bioavailability through Physicochemical and Structural Approaches. Critical Reviews in Food Science and Nutrition, 2008, 49, 48-67.	10.3	365
131	Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Research International, 2007, 40, 311-323.	6.2	189
132	Ï€-Complex formation of conjugated linoleic acid with iron. Food Chemistry, 2007, 100, 972-976.	8.2	3
133	Influence of encapsulation of emulsified lipids with chitosan on their in vivo digestibility. Food Chemistry, 2007, 104, 761-767.	8.2	64
134	Conjugated Linoleic Acid (CLA) Prevents Body Fat Accumulation and Weight Gain in an Animal Model. Journal of Food Science, 2007, 72, S612-7.	3.1	56
135	EFFECTS OF CONJUGATED LINOLEIC ACID ISOMERS ON SERUM TUMOR NECROSIS FACTOR-A CONCENTRATION IN MICE. Journal of Food Biochemistry, 2007, 31, 252-265.	2.9	15
136	INFLUENCE OF STEARIDONIC ACID ON LIPOPROTEIN SECRETION AND FATTY ACID COMPOSITION IN HEPG2 CELLS. Journal of Food Lipids, 2007, 14, 366-376.	1.0	1
137	Effect of conjugated linoleic acid on bone formation and rheumatoid arthritis. European Journal of Pharmacology, 2007, 568, 16-24.	3.5	34
138	NF-κB independent inhibition of lipopolysaccharide-induced cyclooxygenase by a conjugated linoleic acid cognate, conjugated nonadecadienoic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 969-972.	2.4	16
139	Influence of Interfacial Composition on in Vitro Digestibility of Emulsified Lipids: Potential Mechanism for Chitosan's Ability to Inhibit Fat Digestion. Food Biophysics, 2006, 1, 21-29.	3.0	223
140	Selective conjugated fatty acids inhibit guinea pig platelet aggregation. European Journal of Pharmacology, 2006, 545, 93-99.	3.5	10
141	Conjugated linoleic acid stimulates an anti-tumorigenic protein NAC-1 in an isomer specific manner. Carcinogenesis, 2006, 27, 972-981.	2.8	111
142	Effects of trans-10,cis-12 conjugated linoleic acid and cognates on apolipoprotein B secretion in HepG2 cells. Nutrition Research, 2005, 25, 387-399.	2.9	28
143	Biological activities of conjugated fatty acids: conjugated eicosadienoic (conj. 20:2Δc11,t13/t12,c14), eicosatrienoic (conj. 20:3Δc8,t12,c14), and heneicosadienoic (conj. 21:2Δc12,t14/c13,t15) acids and other metabolites of conjugated linoleic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2005. 1687. 120-129.	2.4	38
144	Effects of conjugated linoleic acid on long term feeding in Fischer 344 rats. Food and Chemical Toxicology, 2005, 43, 1273-1279.	3.6	27

#	Article	IF	CITATIONS
145	Structure–activity relationship of conjugated linoleic acid and its cognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fully differentiated 3T3-L1 adipocytes. Journal of Nutritional Biochemistry, 2004, 15, 561-568.	4.2	54
146	Biological activities of conjugated fatty acids: conjugated eicosadienoic (conj. 20:2?), eicosatrienoic (conj. 20:3?), and heneicosadienoic (conj. 21:2?) acids and other metabolites of conjugated linoleic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1687, 120-120.	2.4	0
147	trans-10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPARÎ ³ expression. Biochemical and Biophysical Research Communications, 2003, 303, 795-799.	2.1	151
148	Short-Term Intake of Conjugated Linoleic Acid Inhibits Lipoprotein Lipase and Glucose Metabolism but Does Not Enhance Lipolysis in Mouse Adipose Tissue. Journal of Nutrition, 2003, 133, 663-667.	2.9	50
149	Decreased antigen-induced eicosanoid release in conjugated linoleic acid-fed guinea pigs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1104-R1112.	1.8	68
150	Effects of Conjugated Linoleic Acid (CLA) on Immune Responses, Body Composition and Stearoyl-CoA Desaturase. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 617-627.	1.7	39
151	Inhibition of stearoyl-CoA desaturase activity by the cis-9,trans-11 isomer and the trans-10,cis-12 isomer of conjugated linoleic acid in MDA-MB-231 and MCF-7 human breast cancer cells. Biochemical and Biophysical Research Communications, 2002, 294, 785-790.	2.1	69
152	Differential responses of hamsters and rats fed high-fat or low-fat diets supplemented with conjugated linoleic acid. Nutrition Research, 2002, 22, 715-722.	2.9	39
153	Regulation of Stearoyl-CoA Desaturase Activity by the trans-10,cis-12 Isomer of Conjugated Linoleic Acid in HepG2 Cells. Biochemical and Biophysical Research Communications, 2001, 284, 689-693.	2.1	110
154	The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research, 2001, 40, 283-298.	11.6	894
155	Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor α-null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 233-242.	2.4	131
156	The effects of dietary conjugated nonadecadienoic acid on body composition in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1533, 171-174.	2.4	38
157	Lipoxygenase inhibitors inhibit heparin-releasable lipoprotein lipase activity in 3T3-L1 adipocytes and enhance body fat reduction in mice by conjugated linoleic acid. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1534, 27-33.	2.4	46
158	Comparison of Methylation Procedures for Conjugated Linoleic Acid and Artifact Formation by Commercial (Trimethylsilyl)diazomethane. Journal of Agricultural and Food Chemistry, 2001, 49, 1158-1164.	5.2	116
159	The trans-10,cis-12 Isomer of Conjugated Linoleic Acid Downregulates Stearoyl-CoA Desaturase 1 Gene Expression in 3T3-L1 Adipocytes. Journal of Nutrition, 2000, 130, 1920-1924.	2.9	247
160	Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10,cis-12 conjugated linoleic acid and its derivatives. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1486, 285-292.	2.4	154
161	Mechanisms of Action of Conjugated Linoleic Acid: Evidence and Speculation. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 8-13.	1.8	270
162	Mechanisms of Action of Conjugated Linoleic Acid: Evidence and Speculation. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 8-13.	1.8	15

#	Article	IF	CITATIONS
163	Evidence that the <i>trans</i> â€10, <i>cis</i> â€12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids, 1999, 34, 235-241.	1.7	724
164	Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids, 1999, 34, 243-248.	1.7	284
165	Evidence that commercial calf and horse sera can contain substantial amounts of trans-10,cis-12 conjugated linoleic acid. Lipids, 1998, 33, 817-819.	1.7	40
166	Effect of conjugated linoleic acid on body composition in mice. Lipids, 1997, 32, 853-858.	1.7	1,020