## Masayuki Yokoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263613/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. IScience, 2022, 25, 104040.                                                                                                                                                                                                      | 4.1 | 4         |
| 2  | Effect of sequence context on Polî¶-dependent error-prone extension past (6-4) photoproducts. DNA<br>Repair, 2020, 87, 102771.                                                                                                                                                                                                           | 2.8 | 7         |
| 3  | Functional impacts of the ubiquitin–proteasome system on DNA damage recognition in global genome<br>nucleotide excision repair. Scientific Reports, 2020, 10, 19704.                                                                                                                                                                     | 3.3 | 13        |
| 4  | Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes and Environment, 2019, 41, 2.                                                                                                                                                                                                                    | 2.1 | 91        |
| 5  | Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases Ε, Î1 and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair, 2018, 61, 76-85.                                                                                                               | 2.8 | 5         |
| 6  | Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene, 2017, 597, 1-9.                                                                                                                                                                                                                               | 2.2 | 26        |
| 7  | Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes To Cells, 2017, 22, 310-327.                                                                                                                                                                                         | 1.2 | 22        |
| 8  | Thymine <scp>DNA</scp> glycosylase modulates <scp>DNA</scp> damage response and gene expression<br>by base excision repairâ€dependent and independent mechanisms. Genes To Cells, 2017, 22, 392-405.                                                                                                                                     | 1.2 | 4         |
| 9  | UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or ι. DNA Repair, 2015, 29, 139-146.                                                                                                                                                                                                                   | 2.8 | 19        |
| 10 | Remarkable induction of UV-signature mutations at the 3′-cytosine of dipyrimidine sites except at<br>5′-TCG-3′ in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair,<br>2014, 22, 112-122.                                                                                                          | 2.8 | 16        |
| 11 | Identification of new scavengers for hydroxyl radicals and superoxide dismutase by utilising<br>ultraviolet A photoreaction of 8-methoxypsoralen and a variety of mutants of Escherichia coli:<br>Implications on certain diseases of DNA repair deficiency. Journal of Photochemistry and<br>Photobiology B: Biology, 2012, 116, 30-36. | 3.8 | 11        |
| 12 | Stalled Poll· at its cognate substrate initiates an alternative translesion synthesis pathway via interaction with REV1. Genes To Cells, 2012, 17, 98-108.                                                                                                                                                                               | 1.2 | 16        |
| 13 | DNA polymerase $\hat{I}$ is a limiting factor for A:T mutations in Ig genes and contributes to antibody affinity maturation. European Journal of Immunology, 2008, 38, 2796-2805.                                                                                                                                                        | 2.9 | 15        |
| 14 | Reevaluation of the role of DNA polymerase Î, in somatic hypermutation of immunoglobulin genes. DNA<br>Repair, 2008, 7, 1603-1608.                                                                                                                                                                                                       | 2.8 | 43        |
| 15 | Genetic analysis reveals an intrinsic property of the germinal center B cells to generate A:T mutations.<br>DNA Repair, 2008, 7, 1392-1398.                                                                                                                                                                                              | 2.8 | 13        |
| 16 | DNA Polymerases η and Î, Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes*. Journal of Biological Chemistry, 2007, 282, 17387-17394.                                                                                                                                           | 3.4 | 62        |
| 17 | Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase ι. DNA<br>Repair, 2006, 5, 392-398.                                                                                                                                                                                                               | 2.8 | 35        |
| 18 | UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in<br>Mice Deficient for DNA Polymerase Î1. Molecular and Cellular Biology, 2006, 26, 7696-7706.                                                                                                                                        | 2.3 | 102       |

Masayuki Yokoi

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Studies ofSchizosaccharomyces pombeTFIIE indicate conformational and functional changes in RNA polymerase II at transcription initiation. Genes To Cells, 2005, 10, 207-224.                                                                | 1.2  | 14        |
| 20 | Different mutation signatures in DNA polymerase Â- and MSH6-deficient mice suggest separate roles in<br>antibody diversification. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 8656-8661. | 7.1  | 115       |
| 21 | The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair, 2002, 1, 449-461.                                                         | 2.8  | 82        |
| 22 | Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage. DNA Repair, 2002, 1, 833-845.                                                                                                 | 2.8  | 12        |
| 23 | E2F regulates growth-dependent transcription of genes encoding both catalytic and regulatory subunits of mouse primase. Genes To Cells, 2001, 6, 57-70.                                                                                     | 1.2  | 8         |
| 24 | Xeroderma Pigmentosum Variant: From a Human Genetic Disorder to a Novel DNA Polymerase. Cold<br>Spring Harbor Symposia on Quantitative Biology, 2000, 65, 71-80.                                                                            | 1.1  | 21        |
| 25 | Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase α is controlled by E2F, an<br>Ets-related transcription factor, and Sp1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms,<br>2000, 1492, 341-352.      | 2.4  | 29        |
| 26 | The Xeroderma Pigmentosum Group C Protein Complex XPC-HR23B Plays an Important Role in the<br>Recruitment of Transcription Factor IIH to Damaged DNA. Journal of Biological Chemistry, 2000, 275,<br>9870-9875.                             | 3.4  | 240       |
| 27 | Interaction of hHR23 with S5a. Journal of Biological Chemistry, 1999, 274, 28019-28025.                                                                                                                                                     | 3.4  | 243       |
| 28 | The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature, 1999, 399,<br>700-704.                                                                                                                                 | 27.8 | 1,248     |
| 29 | The Second-Largest Subunit of the Mouse DNA Polymerase α-Primase Complex Facilitates Both<br>Production and Nuclear Translocation of the Catalytic Subunit of DNA Polymerase α. Molecular and<br>Cellular Biology, 1998, 18, 3552-3562.     | 2.3  | 43        |
| 30 | Molecular cloning of the cDNA for the catalytic subunit of plant DNA polymerase α and its cell-cycle dependent expression. Genes To Cells, 1997, 2, 695-709.                                                                                | 1.2  | 17        |