Masayuki Yokoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263613/publications.pdf

Version: 2024-02-01

471509 454955 2,576 30 17 30 citations h-index g-index papers 30 30 30 2093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase Î. Nature, 1999, 399, 700-704.	27.8	1,248
2	Interaction of hHR23 with S5a. Journal of Biological Chemistry, 1999, 274, 28019-28025.	3.4	243
3	The Xeroderma Pigmentosum Group C Protein Complex XPC-HR23B Plays an Important Role in the Recruitment of Transcription Factor IIH to Damaged DNA. Journal of Biological Chemistry, 2000, 275, 9870-9875.	3.4	240
4	Different mutation signatures in DNA polymerase Â- and MSH6-deficient mice suggest separate roles in antibody diversification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8656-8661.	7.1	115
5	UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase $\hat{l}\cdot$ and Mesenchymal Tumors in Mice Deficient for DNA Polymerase \hat{l}^1 . Molecular and Cellular Biology, 2006, 26, 7696-7706.	2.3	102
6	Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes and Environment, 2019, 41, 2.	2.1	91
7	The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. DNA Repair, 2002, 1, 449-461.	2.8	82
8	DNA Polymerases \hat{l} and \hat{l} , Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes*. Journal of Biological Chemistry, 2007, 282, 17387-17394.	3.4	62
9	The Second-Largest Subunit of the Mouse DNA Polymerase α-Primase Complex Facilitates Both Production and Nuclear Translocation of the Catalytic Subunit of DNA Polymerase α. Molecular and Cellular Biology, 1998, 18, 3552-3562.	2.3	43
10	Reevaluation of the role of DNA polymerase $\hat{l}_{,}$ in somatic hypermutation of immunoglobulin genes. DNA Repair, 2008, 7, 1603-1608.	2.8	43
11	Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase Î ¹ . DNA Repair, 2006, 5, 392-398.	2.8	35
12	Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase \hat{l}_{\pm} is controlled by E2F, an Ets-related transcription factor, and Sp1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 341-352.	2.4	29
13	Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene, 2017, 597, 1-9.	2.2	26
14	Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes To Cells, 2017, 22, 310-327.	1.2	22
15	Xeroderma Pigmentosum Variant: From a Human Genetic Disorder to a Novel DNA Polymerase. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 71-80.	1.1	21
16	UV-induced mutations in epidermal cells of mice defective in DNA polymerase \hat{l} - and/or \hat{l}^1 . DNA Repair, 2015, 29, 139-146.	2.8	19
17	Molecular cloning of the cDNA for the catalytic subunit of plant DNA polymerase α and its cell-cycle dependent expression. Genes To Cells, 1997, 2, 695-709.	1.2	17
18	Stalled Polî· at its cognate substrate initiates an alternative translesion synthesis pathway via interaction with REV1. Genes To Cells, 2012, 17, 98-108.	1.2	16

#	Article	IF	CITATIONS
19	Remarkable induction of UV-signature mutations at the $3\hat{a}\in^2$ -cytosine of dipyrimidine sites except at $5\hat{a}\in^2$ -TCG- $3\hat{a}\in^2$ in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair, 2014, 22, 112-122.	2.8	16
20	DNA polymerase \hat{l} is a limiting factor for A:T mutations in Ig genes and contributes to antibody affinity maturation. European Journal of Immunology, 2008, 38, 2796-2805.	2.9	15
21	Studies of Schizosaccharomyces pombe TFIIE indicate conformational and functional changes in RNA polymerase II at transcription initiation. Genes To Cells, 2005, 10, 207-224.	1.2	14
22	Genetic analysis reveals an intrinsic property of the germinal center B cells to generate A:T mutations. DNA Repair, 2008, 7, 1392-1398.	2.8	13
23	Functional impacts of the ubiquitin–proteasome system on DNA damage recognition in global genome nucleotide excision repair. Scientific Reports, 2020, 10, 19704.	3.3	13
24	Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage. DNA Repair, 2002, 1, 833-845.	2.8	12
25	Identification of new scavengers for hydroxyl radicals and superoxide dismutase by utilising ultraviolet A photoreaction of 8-methoxypsoralen and a variety of mutants of Escherichia coli: Implications on certain diseases of DNA repair deficiency. Journal of Photochemistry and Photobiology B: Biology. 2012. 116. 30-36.	3.8	11
26	E2F regulates growth-dependent transcription of genes encoding both catalytic and regulatory subunits of mouse primase. Genes To Cells, 2001, 6, 57-70.	1.2	8
27	Effect of sequence context on Polζ-dependent error-prone extension past (6-4) photoproducts. DNA Repair, 2020, 87, 102771.	2.8	7
28	Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases \hat{l} , \hat{l}^1 and \hat{l}^2 to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair, 2018, 61, 76-85.	2.8	5
29	Thymine <scp>DNA</scp> glycosylase modulates <scp>DNA</scp> damage response and gene expression by base excision repairâ€dependent and independent mechanisms. Genes To Cells, 2017, 22, 392-405.	1.2	4
30	Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. IScience, 2022, 25, 104040.	4.1	4