
Alexandre Alanio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	9.1	970
2	Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respiratory Medicine,the, 2020, 8, e48-e49.	10.7	343
3	Real-Time Identification of Bacteria and <i>Candida</i> Species in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of Clinical Microbiology, 2010, 48, 1542-1548.	3.9	255
4	ECIL guidelines for the diagnosis of Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. Journal of Antimicrobial Chemotherapy, 2016, 71, 2386-2396.	3.0	226
5	Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. MBio, 2020, 11, .	4.1	224
6	ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. Journal of Antimicrobial Chemotherapy, 2016, 71, 2397-2404.	3.0	211
7	Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clinical Microbiology and Infection, 2011, 17, 1531-1537.	6.0	171
8	Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study. Lancet Respiratory Medicine,the, 2022, 10, 180-190.	10.7	161
9	Matrixâ€assisted laser desorption ionization timeâ€ofâ€flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clinical Microbiology and Infection, 2011, 17, 750-755.	6.0	152
10	MALDIâ€TOF MSâ€based drug susceptibility testing of pathogens: The example of <i>Candida albicans</i> and fluconazole. Proteomics, 2009, 9, 4627-4631.	2.2	128
11	Clinical, Diagnostic, and Treatment Disparities between HIV-Infected and Non-HIV-Infected Immunocompromised Patients with <i>Pneumocystis jirovecii</i> Pneumonia. Respiration, 2018, 96, 52-65.	2.6	121
12	Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathogens, 2018, 14, e1006982.	4.7	119
13	Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. Journal of Antimicrobial Chemotherapy, 2011, 66, 371-374.	3.0	115
14	Risk factors associated with COVID-19-associated pulmonary aspergillosis in ICU patients: a French multicentric retrospective cohort. Clinical Microbiology and Infection, 2021, 27, 790.e1-790.e5.	6.0	106
15	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	2.9	105
16	Dynamics of Cryptococcus neoformans-Macrophage Interactions Reveal that Fungal Background Influences Outcome during Cryptococcal Meningoencephalitis in Humans. MBio, 2011, 2, .	4.1	102
17	Cryptococcus neoformans Host Adaptation: Toward Biological Evidence of Dormancy. MBio, 2015, 6, .	4.1	97
18	Detection of Circulating Mucorales DNA in Critically Ill Burn Patients: Preliminary Report of a Screening Strategy for Early Diagnosis and Treatment. Clinical Infectious Diseases, 2016, 63, 1312-1317.	5.8	74

#	Article	IF	CITATIONS
19	Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How?. Clinical Microbiology Reviews, 2017, 30, 671-707.	13.6	65
20	Mucormycosis: New Developments into a Persistently Devastating Infection. Seminars in Respiratory and Critical Care Medicine, 2015, 36, 692-705.	2.1	61
21	Evaluation of Serum Mucorales Polymerase Chain Reaction (PCR) for the Diagnosis of Mucormycoses: The MODIMUCOR Prospective Trial. Clinical Infectious Diseases, 2022, 75, 777-785.	5.8	61
22	<i>In Vitro</i> and <i>In Vivo</i> Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	60
23	Mechanisms of Cryptococcus neoformans-Mediated Host Damage. Frontiers in Immunology, 2018, 9, 855.	4.8	60
24	Fluconazole and Echinocandin Resistance of Candida glabrata Correlates Better with Antifungal Drug Exposure Rather than with MSH2 Mutator Genotype in a French Cohort of Patients Harboring Low Rates of Resistance. Frontiers in Microbiology, 2016, 7, 2038.	3.5	59
25	Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing. MBio, 2018, 9, .	4.1	54
26	Recent advances in the understanding and management of mucormycosis. F1000Research, 2018, 7, 1429.	1.6	53
27	Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses, 2018, 61, 885-894.	4.0	52
28	The presence of Pneumocystis jirovecii in critically ill patients with COVID-19. Journal of Infection, 2021, 82, 84-123.	3.3	52
29	Fungal infections in patients treated with ibrutinib: two unusual cases of invasive aspergillosis and cryptococcal meningoencephalitis. Leukemia and Lymphoma, 2017, 58, 2981-2982.	1.3	50
30	Aspergillus Test Profiles and Mortality in Critically Ill COVID-19 Patients. Journal of Clinical Microbiology, 2021, 59, e0122921.	3.9	50
31	Reactivation of dormant/latent fungal infection. Journal of Infection, 2018, 77, 463-468.	3.3	45
32	Antifungal pre-emptive strategy for high-risk neutropenic patients: why the story is still ongoing. Clinical Microbiology and Infection, 2014, 20, 27-35.	6.0	44
33	Recovery of a triazole-resistant Aspergillus fumigatus in respiratory specimen of COVID-19 patient in ICU – A case report. Medical Mycology Case Reports, 2021, 31, 15-18.	1.3	44
34	AMBIsome Therapy Induction OptimisatioN (AMBITION): High Dose AmBisome for Cryptococcal Meningitis Induction Therapy in sub-Saharan Africa: Study Protocol for a Phase 3 Randomised Controlled Non-Inferiority Trial. Trials, 2018, 19, 649.	1.6	41
35	Evaluation of the COVID-19 IgG/IgM Rapid Test from Orient Gene Biotech. Journal of Clinical Microbiology, 2020, 58, .	3.9	40
36	The Fungal PCR Initiative's evaluation of in-house and commercial Pneumocystis jirovecii qPCR assays: Toward a standard for a diagnostics assay. Medical Mycology, 2020, 58, 779-788.	0.7	39

#	Article	IF	CITATIONS
37	Misidentification of Saprochaete clavata as Magnusiomyces capitatus in Clinical Isolates: Utility of Internal Transcribed Spacer Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Importance of Reliable Databases. Journal of Clinical Microbiology, 2014, 52, 2196-2198.	3.9	37
38	New Short Tandem Repeat-Based Molecular Typing Method for Pneumocystis jirovecii Reveals Intrahospital Transmission between Patients from Different Wards. PLoS ONE, 2015, 10, e0125763.	2.5	37
39	Diversity of Pneumocystis jirovecii during Infection Revealed by Ultra-Deep Pyrosequencing. Frontiers in Microbiology, 2016, 7, 733.	3.5	37
40	Dormancy in Cryptococcus neoformans: 60 years of accumulating evidence. Journal of Clinical Investigation, 2020, 130, 3353-3360.	8.2	35
41	Pneumocystis jirovecii detection in asymptomatic patients: what does its natural history tell us?. F1000Research, 2017, 6, 739.	1.6	35
42	The current state of clinical mycology in Africa: a European Confederation of Medical Mycology and International Society for Human and Animal Mycology survey. Lancet Microbe, The, 2022, 3, e464-e470.	7.3	35
43	Dual Invasive Infection with Phaeoacremonium parasiticum and Paraconiothyrium cyclothyrioides in a Renal Transplant Recipient: Case Report and Comprehensive Review of the Literature of Phaeoacremonium Phaeohyphomycosis. Journal of Clinical Microbiology, 2015, 53, 2084-2094.	3.9	33
44	Why are so many cases of invasive aspergillosisÂmissed?. Medical Mycology, 2019, 57, S94-S103.	0.7	33
45	Azole Preexposure Affects the Aspergillus fumigatus Population in Patients. Antimicrobial Agents and Chemotherapy, 2012, 56, 4948-4950.	3.2	32
46	COVID-19-Associated Pulmonary Aspergillosis, Fungemia, and Pneumocystosis in the Intensive Care Unit: a Retrospective Multicenter Observational Cohort during the First French Pandemic Wave. Microbiology Spectrum, 2021, 9, e0113821.	3.0	32
47	Invasive Pulmonary Infection Due to <i>Trichoderma longibrachiatum</i> Mimicking Invasive Aspergillosis in a Neutropenic Patient Successfully Treated with Voriconazole Combined with Caspofungin. Clinical Infectious Diseases, 2008, 46, e116-e118.	5.8	31
48	Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLoS Pathogens, 2019, 15, e1007945.	4.7	31
49	Emergence of Difficult-to-Treat Tinea Corporis Caused by <i>Trichophyton mentagrophytes</i> Complex Isolates, Paris, France. Emerging Infectious Diseases, 2022, 28, 224-228.	4.3	31
50	Continuous increase of <i>Trichophyton tonsurans</i> as a cause of tinea capitis in the urban area of Paris, France: a 5-year-long study. Medical Mycology, 2017, 55, myw107.	0.7	29
51	Combination of Mycological Criteria: a Better Surrogate to Identify COVID-19-Associated Pulmonary Aspergillosis Patients and Evaluate Prognosis?. Journal of Clinical Microbiology, 2022, 60, JCM0216921.	3.9	29
52	Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: A study by the fungal PCR Initiative and the Modimucor study group. Medical Mycology, 2021, 59, 126-138.	0.7	27
53	Copy Number Variation of Mitochondrial DNA Genes in Pneumocystis jirovecii According to the Fungal Load in BAL Specimens. Frontiers in Microbiology, 2016, 7, 1413.	3.5	26
54	Scedosporiosis/lomentosporiosis observational study (SOS): Clinical significance of <i>Scedosporium</i> species identification. Medical Mycology, 2021, 59, 486-497.	0.7	26

#	Article	IF	CITATIONS
55	Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR. Journal of Microbiological Methods, 2016, 127, 160-163.	1.6	25
56	Development and validation of the European QUALity (EQUAL) score for mucormycosis management in haematology. Journal of Antimicrobial Chemotherapy, 2019, 74, 1704-1712.	3.0	25
57	Evaluation of a New Histoplasma spp. Quantitative RT-PCR Assay. Journal of Molecular Diagnostics, 2021, 23, 698-709.	2.8	25
58	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
59	Challenges in microbiological diagnosis of invasive Aspergillus infections. F1000Research, 2017, 6, 157.	1.6	23
60	Azole Resistance of <i>Aspergillus fumigatus</i> in Immunocompromised Patients with Invasive Aspergillosis. Emerging Infectious Diseases, 2016, 22, 157-158.	4.3	22
61	Intranasal Inoculation of Cryptococcus neoformans in Mice Produces Nasal Infection with Rapid Brain Dissemination. MSphere, 2019, 4, .	2.9	22
62	Utility of adding Pneumocystis jirovecii DNA detection in nasopharyngeal aspirates in immunocompromised adult patients with febrile pneumonia. Medical Mycology, 2015, 53, 241-247.	0.7	21
63	Performance evaluation of multiplex PCR including Aspergillus—not so simple!: Table 1 Medical Mycology, 2017, 55, 56-62.	0.7	21
64	Circulating Aspergillus fumigatus DNA Is Quantitatively Correlated to Galactomannan in Serum. Frontiers in Microbiology, 2017, 8, 2040.	3.5	21
65	Diversity of Pneumocystis jirovecii Across Europe: A Multicentre Observational Study. EBioMedicine, 2017, 22, 155-163.	6.1	20
66	ECMM <i>Candi</i> Reg—A ready to use platform for outbreaks and epidemiological studies. Mycoses, 2019, 62, 920-927.	4.0	19
67	The Potential Role of Clinical Metagenomics in Infectious Diseases: Therapeutic Perspectives. Drugs, 2021, 81, 1453-1466.	10.9	18
68	An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Review of Molecular Diagnostics, 2022, 22, 169-184.	3.1	18
69	Direct genotyping of Toxoplasma gondii from amniotic fluids based on B1 gene polymorphism using minisequencing analysis. BMC Infectious Diseases, 2013, 13, 552.	2.9	17
70	Molecular Demonstration of a Pneumocystis Outbreak in Stem Cell Transplant Patients: Evidence for Transmission in the Daycare Center. Frontiers in Microbiology, 2017, 8, 700.	3.5	17
71	Microsporum praecox: Molecular Identification of a New Case and Review of the Literature. Mycopathologia, 2011, 171, 61-65.	3.1	16
72	<i>In Vitro</i> Combination of Anidulafungin and Voriconazole against Intrinsically Azole-Susceptible and -Resistant Aspergillus spp. Antimicrobial Agents and Chemotherapy, 2012, 56, 4500-4503.	3.2	16

#	Article	IF	CITATIONS
73	Seroprevalence of Toxoplasma gondii and direct genotyping using minisequencing in free-range pigs in Burkina Faso. International Journal of Food Microbiology, 2016, 230, 10-15.	4.7	16
74	Continuous Decline of Toxoplasma gondii Seroprevalence in Hospital: A 1997–2014 Longitudinal Study in Paris, France. Frontiers in Microbiology, 2018, 9, 2369.	3.5	16
75	Treatment with adalimumab for severe immune reconstitution inflammatory syndrome in an HIV-infected patient presenting with cryptococcal meningitis. Médecine Et Maladies Infectieuses, 2016, 46, 154-156.	5.0	15
76	New therapeutic strategies for invasive aspergillosis in the era of azole resistance: how should the prevalence of azole resistance be defined?: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 2075-2078.	3.0	14
77	Failure of voriconazole therapy due to acquired azole resistance in Aspergillus fumigatus in a kidney transplant recipient with chronic necrotizing aspergillosis. American Journal of Transplantation, 2018, 18, 2352-2355.	4.7	14
78	Importance of Operational Factors in the Reproducibility of Aspergillus Galactomannan Enzyme Immune Assay. PLoS ONE, 2015, 10, e0124044.	2.5	14
79	High Prevalence of Putative Invasive Pulmonary Aspergillosis in Critically III COVID-19 Patients. SSRN Electronic Journal, 0, , .	0.4	14
80	COVID-19-associated mixed mold infection: A case report of aspergillosis and mucormycosis and a literature review. Journal De Mycologie Medicale, 2022, 32, 101231.	1.5	14
81	High diversity of nonâ€sporulating moulds in respiratory specimens of immunocompromised patients: should all the species be reported when diagnosing invasive aspergillosis?. Mycoses, 2015, 58, 557-564.	4.0	13
82	<i>Pneumocystis jirovecii</i> pneumonia: still a concern in patients with haematological malignancies and stem cell transplant recipients—authors' response. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw580.	3.0	13
83	New Insights Into Cryptococcus Spp. Biology and Cryptococcal Meningitis. Current Neurology and Neuroscience Reports, 2019, 19, 81.	4.2	13
84	Outbreak-Causing Fungi: Pneumocystis jirovecii. Mycopathologia, 2020, 185, 783-800.	3.1	13
85	Outcome and potentially modifiable risk factors for candidemia in critically ill burns patients: A matched cohort study. Mycoses, 2019, 62, 237-246.	4.0	13
86	Quantification of Pneumocystis jirovecii: Cross-Platform Comparison of One qPCR Assay with Leading Platforms and Six Master Mixes. Journal of Fungi (Basel, Switzerland), 2020, 6, 9.	3.5	13
87	Mucormycosis. Current Opinion in Hematology, 2014, 21, 482-490.	2.5	12
88	Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant Aspergillus fumigatus and other species of Aspergillus. Journal of Antimicrobial Chemotherapy, 2019, 74, 2950-2958.	3.0	12
89	Variable Correlation between Bronchoalveolar Lavage Fluid Fungal Load and Serum-(1,3)-β-d-Glucan in Patients with Pneumocystosis—A Multicenter ECMM Excellence Center Study. Journal of Fungi (Basel,) Tj ETQc	1 B. G .784	31 # 2rgBT /0
90	Agents of Systemic and Subcutaneous Mucormycosis and Entomophthoromycosis. , 0, , 2087-2108.		12

#	Article	IF	CITATIONS
91	Correlation Between <i>Pneumocystis jirovecii</i> Mitochondrial Genotypes and High and Low Fungal Loads Assessed by Single Nucleotide Primer Extension Assay and Quantitative Realâ€Time <scp>PCR</scp> . Journal of Eukaryotic Microbiology, 2015, 62, 650-656.	1.7	11
92	Evaluation of Mass Spectrometry-Based Detection of Panfungal Serum Disaccharide for Diagnosis of Invasive Fungal Infections: Results from a Collaborative Study Involving Six European Clinical Centers. Journal of Clinical Microbiology, 2019, 57, .	3.9	11
93	Outcome and characteristics of invasive fungal infections in critically ill burn patients: A multicenter retrospective study. Mycoses, 2020, 63, 535-542.	4.0	11
94	Deep cutaneous fungal infections in solid-organ transplant recipients. Journal of the American Academy of Dermatology, 2020, 83, 455-462.	1.2	11
95	Different repartition of the cryptic species of black aspergilli according to the anatomical sites in human infections, in a French University hospital. Medical Mycology, 2021, 59, 985-992.	0.7	11
96	Recent advances in managing HIV-associated cryptococcal meningitis. F1000Research, 2019, 8, 743.	1.6	11
97	A cell impedance-based real-time in vitro assay to assess the toxicity of amphotericin B formulations. Toxicology and Applied Pharmacology, 2017, 334, 18-23.	2.8	10
98	Emerging mould infections: Get prepared to meet unexpected fungi in your patient. Medical Mycology, 2019, 58, 156-162.	0.7	10
99	Aspergillus flavus malignant external otitis in a diabetic patient: case report and literature review. Infection, 2020, 48, 193-203.	4.7	10
100	Nucleic Acid Tools for Invasive Fungal Disease Diagnosis. Current Fungal Infection Reports, 2020, 14, 76-88.	2.6	10
101	Tracking a Global Threat: a New Genotyping Method for Candida auris. MBio, 2020, 11, .	4.1	9
102	Azole Resistance in Aspergillus fumigatus—Current Epidemiology and Future Perspectives. Current Fungal Infection Reports, 2011, 5, 168-178.	2.6	8
103	Diagnostic and therapeutic strategies in cryptococcosis: impact on outcome. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180050.	1.6	8
104	Time to and differential time to blood culture positivity for assessing catheterâ€related yeast fungaemia: A longitudinal, 7â€year study in a single university hospital. Mycoses, 2020, 63, 95-103.	4.0	8
105	Fungal infections should be part of the core outcome set for COVID-19. Lancet Infectious Diseases, The, 2021, 21, e145.	9.1	8
106	Prospective comparison of (1,3)-beta-D-glucan detection using colorimetric and turbidimetric assays for diagnosing invasive fungal disease. Medical Mycology, 2021, 59, 882-889.	0.7	8
107	Increased sensitivity of a new commercial reverse transcriptase-quantitative PCR for the detection of <i>Pneumocystis jirovecii</i> in respiratory specimens. Medical Mycology, 2021, 59, 845-848.	0.7	8
108	Imported leishmaniasis in travelers: a 7-year retrospective from a Parisian hospital in France. BMC Infectious Diseases, 2021, 21, 953.	2.9	7

#	Article	IF	CITATIONS
109	Muscle diffusion of liposomal amphotericinÂB and posaconazole in critically ill burn patients receiving continuous hemodialysis. Intensive Care Medicine, 2015, 41, 948-949.	8.2	6
110	Failure of multiplex meningitis/encephalitis (ME) NAT during cryptococcal meningitis in solid organ recipients. Transplant Infectious Disease, 2020, 22, e13263.	1.7	6
111	Multiple colony antifungal susceptibility testing detects polyresistance in clinical Candida cultures: an ECMM Excellence centers study. Clinical Microbiology and Infection, 2022, , .	6.0	6
112	Diagnosis of Pneumocystis jirovecii Pneumonia: Role of β-D-Glucan Detection and PCR. Current Fungal Infection Reports, 2014, 8, 322-330.	2.6	5
113	Comparison of MultiLocus Sequence Typing (MLST) and Microsatellite Length Polymorphism (MLP) for Pneumocystis jirovecii genotyping. Computational and Structural Biotechnology Journal, 2020, 18, 2890-2896.	4.1	5
114	Cerebral histoplasmosis caused by <i>Histoplasma capsulatum</i> var. <i>duboisii</i> in a patient with no known immunodeficiency. Journal of Travel Medicine, 2021, 28, .	3.0	5
115	The role of glycosylphosphatidylinositol (gpi) anchored proteins in Cryptococcus neoformans. Microbes and Infection, 2022, 24, 105016.	1.9	5
116	Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignanciesauthors' response. Journal of Antimicrobial Chemotherapy, 2011, 66, 955-955.	3.0	3
117	Comment on: T2Candida MR as a predictor of outcome in patients with suspected invasive candidiasis starting empirical antifungal treatment: a prospective pilot study. Journal of Antimicrobial Chemotherapy, 2019, 74, 532-533.	3.0	3
118	Entamoeba histolytica DNA Detection in Serum from Patients with Suspected Amoebic Liver Abscess. Journal of Clinical Microbiology, 2020, 58, .	3.9	3
119	The enigmatic role of fungal annexins: the case of Cryptococcus neoformans. Microbiology (United) Tj ETQq1 1 0.	784314 r 1.8	ggT /Overlo
120	Primary antifungal prophylaxis with micafungin after allogeneic hematopoietic stem cell transplantation: a monocentric prospective study. Annals of Hematology, 2019, 98, 1033-1035.	1.8	2
121	Do COVID-19 Patients Admitted to the ICU Require Anti-Pneumocystis Jirovecii Prophylaxis?. SSRN Electronic Journal, 0, , .	0.4	2
122	Invasive Rhinosinusitis Caused by Alternaria infectoria in a Patient with Autosomal Recessive CARD9 Deficiency and a Review of the Literature. Journal of Fungi (Basel, Switzerland), 2022, 8, 446.	3.5	2
123	La spectrométrie de masse de type MALDI-TOF en mycologie cliniqueÂ: avantages réels, écueils potentiels. Journal Des Anti-infectieux, 2013, 15, 71-82.	0.1	1
124	The Current State of Laboratory Fungal Diagnostics and Availability of Antifungal Treatment in Africa: A ECMM and ISHAM Survey. SSRN Electronic Journal, 0, , .	0.4	1
125	SUPERFICIAL BLADDER UROTHELILAL CELL CARCINOMA PROGNOSTIC FACTORS : PROSPECTIVE EVALUATION OF COMBINED FGFR3/P53 GENOTYPES. Journal of Urology, 2009, 181, 304-305.	0.4	0
126	Antimould azole antifungals: indications and therapeutic drug monitoring. Hematologie, 2016, 22, 406-420.	0.0	0

#	Article	IF	CITATIONS
127	Genotyping Pneumocystis jirovecii: Impacting Our Understanding of Interhuman Transmission. OBM Genetics, 2019, 3, 1-1.	0.4	0
128	Yeast Infections. Hematologic Malignancies, 2021, , 221-239.	0.2	0