
Florian Maier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2263069/publications.pdf Version: 2024-02-01

FLODIAN MAIED

#	Article	IF	CITATIONS
1	Origin of Surface Conductivity in Diamond. Physical Review Letters, 2000, 85, 3472-3475.	2.9	820
2	Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Physical Review B, 2001, 64, .	1.1	400
3	Towards a Molecular Understanding of Cation–Anion Interactions—Probing the Electronic Structure of Imidazolium Ionic Liquids by NMR Spectroscopy, Xâ€ray Photoelectron Spectroscopy and Theoretical Calculations. Chemistry - A European Journal, 2010, 16, 9018-9033.	1.7	264
4	Photoelectron Spectroscopy of Ionic Liquid-Based Interfaces. Chemical Reviews, 2010, 110, 5158-5190.	23.0	261
5	Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nature Chemistry, 2017, 9, 862-867.	6.6	234
6	Density and Surface Tension of Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 17025-17036.	1.2	218
7	Interaction of Cobalt(II) Tetraarylporphyrins with a Ag(111) Surface Studied with Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 3090-3098.	1.5	188
8	Liquid/Solid Interface of Ultrathin Ionic Liquid Films: [C ₁ C ₁ Im][Tf ₂ N] and [C ₈ C ₁ Im][Tf ₂ N] on Au(111). Langmuir, 2011, 27, 3662-3671.	1.6	186
9	Surface Science and Model Catalysis with Ionic Liquidâ€Modified Materials. Advanced Materials, 2011, 23, 2571-2587.	11.1	181
10	Influence of Different Substituents on the Surface Composition of Ionic Liquids Studied Using ARXPS. Journal of Physical Chemistry B, 2009, 113, 2854-2864.	1.2	177
11	Influence of Different Anions on the Surface Composition of Ionic Liquids Studied Using ARXPS. Journal of Physical Chemistry B, 2009, 113, 8682-8688.	1.2	176
12	Insights into the surface composition and enrichment effects of ionic liquids and ionic liquid mixtures. Physical Chemistry Chemical Physics, 2010, 12, 1905.	1.3	143
13	Physical Vapor Deposition of [EMIM][Tf ₂ N]: A New Approach to the Modification of Surface Properties with Ultrathin Ionic Liquid Films. ChemPhysChem, 2008, 9, 2185-2190.	1.0	140
14	Surface Characterization of Functionalized Imidazolium-Based Ionic Liquids. Langmuir, 2008, 24, 9500-9507.	1.6	126
15	High-resolution surface-sensitive C1score-level spectra of clean and hydrogen-terminated diamond (110) and (111) surfaces. Physical Review B, 1998, 57, 12397-12409.	1.1	121
16	Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 2016, 4, 15896-15903.	5.2	119
17	Surface Enrichment and Depletion Effects of Ions Dissolved in an Ionic Liquid: An X-ray Photoelectron Spectroscopy Study. Angewandte Chemie - International Edition, 2006, 45, 7778-7780.	7.2	117
18	Carbon Dioxide Capture by an Amine Functionalized Ionic Liquid: Fundamental Differences of Surface and Bulk Behavior. Journal of the American Chemical Society, 2014, 136, 436-441.	6.6	109

#	Article	IF	CITATIONS
19	Surface Studies on the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethylsulfate Using X-Ray Photoelectron Spectroscopy (XPS). Zeitschrift Fur Physikalische Chemie, 2006, 220, 1439-1453.	1.4	101
20	Interfaces of ionic liquids and transition metal surfaces—adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces. Physical Chemistry Chemical Physics, 2012, 14, 5153.	1.3	87
21	At the ionic liquid metal interface: structure formation and temperature dependent behavior of an ionic liquid adlayer on Au(111). Physical Chemistry Chemical Physics, 2013, 15, 17295.	1.3	82
22	Diamond surface conductivity experiments and photoelectron spectroscopy. Diamond and Related Materials, 2001, 10, 416-422.	1.8	79
23	Ionic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Physical Chemistry Chemical Physics, 2010, 12, 10610.	1.3	77
24	Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nature Communications, 2019, 10, 509.	5.8	61
25	Interfacial Behavior of Thin Ionic Liquid Films on Mica. Journal of Physical Chemistry C, 2013, 117, 5101-5111.	1.5	60
26	Organic Reactions in Ionic Liquids Studied by in Situ XPS. ChemPhysChem, 2012, 13, 1725-1735.	1.0	50
27	Strong and Tunable Spin–Orbit Coupling in a Two-Dimensional Hole Gas in Ionic-Liquid Gated Diamond Devices. Nano Letters, 2016, 16, 3768-3773.	4.5	45
28	Electronic states of an ordered oxide on C-terminated 6H–SiC. Surface Science, 1999, 442, 531-542.	0.8	44
29	Chloroalkylsulfonate ionic liquids by ring opening of sultones with organic chloride salts. Chemical Communications, 2008, , 3867.	2.2	39
30	The hydrogenated and bare diamond (110) surface: a combined LEED-, XPS-, and ARPES study. Surface Science, 1999, 443, 177-185.	0.8	37
31	Influence of Substituents and Functional Groups on the Surface Composition of Ionic Liquids. Chemistry - A European Journal, 2014, 20, 3954-3965.	1.7	37
32	Ligand Effects on the Surface Composition of Rhâ€Containing Ionic Liquid Solutions Used in Hydroformylation Catalysis. Chemistry - A European Journal, 2010, 16, 12083-12087.	1.7	34
33	Probing the Surface Tension of Ionic Liquids Using the Langmuir Principle. Langmuir, 2018, 34, 4408-4416.	1.6	31
34	Chemical and (Photo) atalytical Transformations in Photonic Crystal Fibers. ChemCatChem, 2013, 5, 641-650.	1.8	30
35	Interface of Ionic Liquids and Carbon: Ultrathin [C ₁ C ₁ Im][Tf ₂ N] Films on Graphite and Graphene. Journal of Physical Chemistry C, 2015, 119, 28068-28076.	1.5	30
36	Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces. Review of Scientific Instruments, 2016, 87, 045105.	0.6	30

#	Article	IF	CITATIONS
37	Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111). Physical Chemistry Chemical Physics, 2018, 20, 12929-12938.	1.3	29
38	Ultrathin ionic liquid films on metal surfaces: adsorption, growth, stability and exchange phenomena. Advances in Physics: X, 2020, 5, 1761266.	1.5	27
39	Monitoring of Liquidâ€Phase Organic Reactions by Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 2610-2613.	7.2	26
40	Thermally stable bis(trifluoromethylsulfonyl)imide salts and their mixtures. New Journal of Chemistry, 2016, 40, 7157-7161.	1.4	25
41	Electrospray Ionization Deposition of Ultrathin Ionic Liquid Films: [C ₈ C ₁ Im]Cl and [C ₈ C ₁ Im][Tf ₂ N] on Au(111). Langmuir, 2014, 30, 1063-1071.	1.6	24
42	Anion Exchange at the Liquid/Solid Interface of Ultrathin Ionic Liquid Films on Ag(111). ChemPhysChem, 2018, 19, 2978-2984.	1.0	23
43	Geometry of the (2×1) reconstruction of diamond (111). Journal of Physics Condensed Matter, 2002, 14, 3085-3092.	0.7	22
44	Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids. Journal of Molecular Liquids, 2014, 192, 103-113.	2.3	22
45	Atomic Force and Scanning Tunneling Microscopy of Ordered Ionic Liquid Wetting Layers from 110 K up to Room Temperature. ACS Nano, 2020, 14, 9000-9010.	7.3	21
46	Surface Enrichment in Equimolar Mixtures of Nonâ€Functionalized and Functionalized Imidazoliumâ€Based Ionic Liquids. ChemPhysChem, 2018, 19, 1733-1745.	1.0	20
47	Surface doping: a special feature of diamond. Journal of Physics Condensed Matter, 2001, 13, 8979-8987.	0.7	19
48	Switching adsorption and growth behavior of ultrathin [C ₂ C ₁ Im][OTf] films on Au(111) by Pd deposition. Physical Chemistry Chemical Physics, 2016, 18, 25143-25150.	1.3	19
49	Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys. Surface Science, 2016, 651, 16-21.	0.8	18
50	Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface. Journal of Chemical Physics, 2017, 146, 170901.	1.2	18
51	Cation Exchange at the Interfaces of Ultrathin Films of Fluorous Ionic Liquids on Ag(111). Langmuir, 2019, 35, 398-405.	1.6	18
52	Temperatureâ€Dependent Surface Enrichment Effects in Binary Mixtures of Fluorinated and Nonâ€Fluorinated Ionic Liquids. Chemistry - A European Journal, 2020, 26, 1117-1126.	1.7	17
53	Growth of Multilayers of Ionic Liquids on Au(111) Investigated by Atomic Force Microscopy in Ultrahigh Vacuum. Langmuir, 2020, 36, 13670-13681.	1.6	17
54	Surface Tension and Viscosity of Binary Mixtures of the Fluorinated and Non-fluorinated Ionic Liquids [PFBMIm][PF6] and [C4C1Im][PF6] by the Pendant Drop Method and Surface Light Scattering. International Journal of Thermophysics, 2020, 41, 1.	1.0	17

#	Article	IF	CITATIONS
55	Surface-Induced Changes in the Thermochromic Transformation of an Ionic Liquid Cobalt Thiocyanate Complex. Journal of Physical Chemistry Letters, 2017, 8, 1137-1141.	2.1	16
56	Cyclic Thiouronium Ionic Liquids: Physicochemical Properties and their Electronic Structure Probed by Xâ€Ray Induced Photoelectron Spectroscopy. Chemistry - A European Journal, 2012, 18, 8288-8291.	1.7	15
57	Probing a Gas/Liquid Acid–Base Reaction by Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 8904-8907.	7.2	15
58	Temperatureâ€Dependent Surfaceâ€Enrichment Effects of Imidazoliumâ€Based Ionic Liquids. ChemPhysChem, 2013, 14, 3726-3730.	1.0	15
59	Reactions of a Polyhalide Ionic Liquid with Copper, Silver, and Gold. ChemistryOpen, 2019, 8, 15-22.	0.9	15
60	Capture of Carbon Dioxide at the Gas–Liquid Interface Elucidated by Surface Science Approaches. Angewandte Chemie - International Edition, 2011, 50, 10133-10134.	7.2	13
61	Vacuum Surface Science Meets Heterogeneous Catalysis: Dehydrogenation of a Liquid Organic Hydrogen Carrier in the Liquid State. ChemPhysChem, 2015, 16, 1873-1879.	1.0	13
62	Spectroscopic investigations of diamond/hydrogen/metal and diamond/metal interfaces. Diamond and Related Materials, 2001, 10, 506-510.	1.8	11
63	Resonant magnetic scattering study of the 50% Ho-Tb alloy. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 753-754.	1.0	10
64	Methylated [(arene)(1,3-cyclohexadiene)Ru(0)] complexes as low-melting MOCVD precursor complexes with a controlled follow-up chemistry of the ligands. Journal of Materials Chemistry, 2011, 21, 3014.	6.7	10
65	Low melting Li/K/Cs acetate salt mixtures as new ionic media for catalytic applications – first physico-chemical characterization. Dalton Transactions, 2012, 41, 14433.	1.6	10
66	Pronounced surface enrichment of fluorinated ionic liquids in binary mixtures with methoxy-functionalized ionic liquids. Journal of Molecular Liquids, 2020, 305, 112783.	2.3	10
67	Time- and Temperature-Dependent Growth Behavior of Ionic Liquids on Au(111) Studied by Atomic Force Microscopy in Ultrahigh Vacuum. Journal of Physical Chemistry C, 2021, 125, 20439-20449.	1.5	10
68	Methylated [(benzene)(1,3â€butadiene)Ru ⁰] Derivatives as Novel MOCVD Precursors with Favorable Properties. Chemical Vapor Deposition, 2011, 17, 15-21.	1.4	8
69	Interface Properties and Physicochemical Characterization of the Low-Temperature Molten Salt Li/K/Cs Acetate. Journal of Physical Chemistry C, 2013, 117, 22939-22946.	1.5	7
70	Stability and Exchange Processes in Ionic Liquid/Porphyrin Composite Films on Metal Surfaces. Journal of Physical Chemistry C, 2019, 123, 29708-29721.	1.5	7
71	Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ Xâ€ray Photoelectron Spectroscopy. ChemistryOpen, 2019, 8, 1365-1368.	0.9	6
72	Enrichment effects of ionic liquid mixtures at polarized electrode interfaces monitored by potential screening. Physical Chemistry Chemical Physics, 2021, 23, 10756-10762.	1.3	6

#	Article	IF	CITATIONS
73	Maieret al.Reply:. Physical Review Letters, 2001, 87, .	2.9	5
74	On the Dynamic Interaction of <i>n</i> â€Butane with Imidazoliumâ€Based Ionic Liquids. Angewandte Chemie - International Edition, 2020, 59, 14429-14433.	7.2	5
75	Adsorption, Wetting, Growth, and Thermal Stability of the Protic Ionic Liquid Diethylmethylammonium Trifluoromethanesulfonate on Ag(111) and Au(111). Langmuir, 2021, 37, 11552-11560.	1.6	5
76	Surface behavior of low-temperature molten salt mixtures during the transition from liquid to solid. Journal of Molecular Liquids, 2019, 275, 290-296.	2.3	3
77	B/N-doped carbon sheets from a new ionic liquid with excellent sorption properties for methylene blue. Journal of Ionic Liquids, 2021, 1, 100004.	1.0	3
78	<i>>n</i> â€Butane, <i>iso</i> â€Butane and 1â€Butene Adsorption on Imidazoliumâ€Based Ionic Liquids Studied with Molecular Beam Techniques. Chemistry - A European Journal, 2021, 27, 17059-17065.	1.7	3
79	xmĺns:mml="http://www.w3.org/1998/Mathľ/MathŃL"> < mml:mrow> < mml:mi mathvariant="normal">V < mml:msub> < mml:mi mathvariant="normal">O < mml:mn>2 < /mml:msub> < mml:msub> < mml:mrow> < mml:mo> (< mathvariant="normal">T < /mml:mrow> single crystals. Physical	/mml:mo>	دmml:mn»1
80	Review Materials, 2021. 5, . On the adsorption of <i>n</i> -butane on alkyl imidazolium ionic liquids with different anions using a new molecular beam setup. Journal of Chemical Physics, 2020, 153, 214706.	1.2	2
81	A simple design for a helium scattering apparatus. Surface Science, 1997, 377-379, 1101-1105.	0.8	1
82	Die dynamische Wechselwirkung von n â€Butan mit Imidazoliumâ€basierten ionischen Flüssigkeiten. Angewandte Chemie, 2020, 132, 14536-14541.	1.6	1
83	The Effect of Ambient Conditions on the Potential Screening at Ionic Liquid – Electrode Interfaces. Journal of Ionic Liquids, 2022, 2, 100019.	1.0	1
84	Onâ \in Surface Metathesis of an Ionic Liquid on Ag(111). Chemistry - A European Journal, 2022, , .	1.7	1
85	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	0