Yuanli Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/226292/publications.pdf

Version: 2024-02-01

117453 123241 4,002 90 34 61 citations h-index g-index papers 90 90 90 3315 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Two-dimensional polymerization-induced electrostatic self-assembly <i>via</i> a C12-polyelectrolyte lamellar template. Chemical Communications, 2022, 58, 6793-6796.	2.2	6
2	Nanostructured Multiphase Condensation of Complex Coacervates in Polymerization-Induced Electrostatic Self-Assembly. ACS Macro Letters, 2021, 10, 780-785.	2.3	10
3	Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly. Macromolecules, 2021, 54, 5577-5585.	2.2	17
4	Liquid-Phase Condensation via Macromolecular Crowding in Polymerization-Induced Electrostatic Self-Assembly. ACS Macro Letters, 2021, 10, 1410-1415.	2.3	5
5	Azoreductase-triggered fluorescent nanoprobe synthesized by RAFT-mediated polymerization-induced self-assembly for drug release. Polymer Chemistry, 2020, 11, 5619-5629.	1.9	26
6	Electrostatic Manipulation of Triblock Terpolymer Nanofilm Compartmentalization during Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules, 2020, 53, 2220-2227.	2.2	12
7	Noncovalent structural locking of thermoresponsive polyion complex micelles, nanowires, and vesicles <i>via < i>polymerization-induced electrostatic self-assembly using an arginine-like monomer. Chemical Communications, 2020, 56, 4954-4957.</i>	2.2	23
8	Polymerization-Induced Hierarchical Electrostatic Self-Assembly: Scalable Synthesis of Multicompartment Polyion Complex Micelles and Their Monolayer Colloidal Nanosheets and Nanocages. ACS Macro Letters, 2020, 9, 454-458.	2.3	25
9	Polymerization-Induced Self-Assembly Promoted by Liquid–Liquid Phase Separation. ACS Macro Letters, 2019, 8, 943-946.	2.3	28
10	Visible Light Initiated Thermoresponsive Aqueous Dispersion Polymerization-Induced Self-Assembly. Macromolecules, 2019, 52, 1033-1041.	2.2	52
11	Colloidal Stable PIC Vesicles and Lamellae Enabled by Wavelength-Orthogonal Disulfide Exchange and Polymerization-Induced Electrostatic Self-Assembly. Macromolecules, 2019, 52, 4703-4712.	2.2	58
12	Sequence-Controlled Polymerization-Induced Self-Assembly. ACS Macro Letters, 2019, 8, 623-628.	2.3	48
13	Synthesis and Solution Self-Assembly Properties of Cyclic Rod–Coil Diblock Copolymers. ACS Macro Letters, 2019, 8, 1564-1569.	2.3	15
14	Synthesis of One-Component Nanostructured Polyion Complexes via Polymerization-Induced Electrostatic Self-Assembly. ACS Macro Letters, 2018, 7, 208-212.	2.3	64
15	Compartmentalization and Unidirectional Cross-Domain Molecule Shuttling of Organometallic Single-Chain Nanoparticles. ACS Macro Letters, 2018, 7, 572-575.	2.3	15
16	Synthesis of Lowâ€Dimensional Polyion Complex Nanomaterials via Polymerizationâ€Induced Electrostatic Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 1053-1056.	7.2	167
17	Synthesis of Lowâ€Dimensional Polyion Complex Nanomaterials via Polymerizationâ€Induced Electrostatic Selfâ€Assembly. Angewandte Chemie, 2018, 130, 1065-1068.	1.6	16

Facile and controllable synthesis of hybrid silica nanoparticles densely grafted with poly(ethylene) Tj ETQq0 0 0 rgBI_6Overlock 10 Tf 50

#	Article	IF	Citations
19	Compartmentalization of an ABC triblock copolymer single-chain nanoparticle via coordination-driven orthogonal self-assembly. Polymer Chemistry, 2017, 8, 3755-3763.	1.9	24
20	Metalâ€Folded Singleâ€Chain Nanoparticle: Nanoclusters and Selfâ€Assembled Reductionâ€Responsive Subâ€5â Discrete Subdomains. Macromolecular Rapid Communications, 2017, 38, 1700269.	€nm 2.8	7
21	Chelationâ€Induced Polymer Structural Hierarchy/Complexity in Water. Macromolecular Rapid Communications, 2016, 37, 1275-1281.	2.0	1
22	Reversible Switched Detection of Dihydroxybenzenes Using a Temperature-sensitive Electrochemical Sensing Film. Electrochimica Acta, 2016, 192, 158-166.	2.6	21
23	Temperature-responsive amperometric H2O2 biosensor using a composite film consisting of poly(N-isopropylacrylamide)-b-poly (2-acrylamidoethyl benzoate), graphene oxide and hemoglobin. Mikrochimica Acta, 2016, 183, 2501-2508.	2.5	24
24	Synthesis of Hydrogen-Bonded Pore-Switchable Cylindrical Vesicles via Visible-Light-Mediated RAFT Room-Temperature Aqueous Dispersion Polymerization. ACS Macro Letters, 2016, 5, 1327-1331.	2.3	111
25	Autocatalytic Self-Sorting in Biomimetic Polymer. Macromolecules, 2016, 49, 2189-2196.	2.2	3
26	The use of electrostatic association for rapid RAFT synthesis of histamine polyelectrolyte in aqueous solutions at and below 25 °C. Polymer Chemistry, 2016, 7, 176-183.	1.9	8
27	Reconstruction of Block Copolymer Micelles to Longâ€Range Ordered Dense Nanopatterns Via Lightâ€Tunable Hydrogenâ€Bonding Association. Macromolecular Rapid Communications, 2015, 36, 1505-1510.	2.0	4
28	Construction and Selfâ€Assembly of Singleâ€Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water. Macromolecular Rapid Communications, 2015, 36, 1521-1527.	2.0	22
29	Directional supracolloidal self-assembly via dynamic covalent bonds and metal coordination. Soft Matter, 2015, 11, 5546-5553.	1.2	11
30	The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polymer Chemistry, 2015, 6, 4955-4965.	1.9	133
31	Use of Polyion Complexation for Polymerization-Induced Self-Assembly in Water under Visible Light Irradiation at 25 °C. ACS Macro Letters, 2015, 4, 1293-1296.	2.3	114
32	Correction to Controlled Mineralization of Calcium Carbonate on the Surface of Nonpolar Organic Fibers. Crystal Growth and Design, 2015, 15, 3546-3546.	1.4	0
33	Programmable self-assembly of a cystamine-block copolymer in response to pH and progressive reduction–ionization–oxidation. Polymer Chemistry, 2015, 6, 7455-7463.	1.9	5
34	Acceleration and Selective Monomer Addition during Aqueous RAFT Copolymerization of Ionic Monomers at 25 °C. Macromolecular Rapid Communications, 2014, 35, 1430-1435.	2.0	15
35	Subcomponent self-assembly of polymer chains based on dynamic and geometrical coordination diversity of the first row transition metal ions. Polymer Chemistry, 2014, 5, 1202-1209.	1.9	17
36	Facile synthesis, sequence-tuned thermoresponsive behaviours and reaction-induced reorganization of water-soluble keto-polymers. Polymer Chemistry, 2014, 5, 4115-4123.	1.9	20

#	Article	IF	Citations
37	Thermoresponsive Synergistic Hydrogen Bonding Switched by Several Guest Units in a Waterâ€Soluble Polymer. Macromolecular Rapid Communications, 2013, 34, 411-416.	2.0	9
38	Switching preorganization and thermoresponsive behavior of a water-soluble polymer via light-tunable hydrogen bonding. Soft Matter, 2013, 9, 4036.	1.2	11
39	Visible Light Mediated Fast Iterative RAFT Synthesis of Aminoâ€Based Reactive Copolymers in Water at 20 °C. Macromolecular Rapid Communications, 2013, 34, 1827-1832.	2.0	44
40	Toward rapid aqueous RAFT polymerization of primary amine functional monomer under visible light irradiation at 25 ${\rm \hat{A}}^{\circ}{\rm C}$. Polymer Chemistry, 2013, 4, 1176-1182.	1.9	66
41	Programmable selectivity of metal–imine bond coordination in subcomponent self-assembly of a primary amine based block copolymer. Soft Matter, 2013, 9, 1885-1894.	1.2	15
42	Botryoidâ€Shaped Reactive Nanoparticles through Spontaneous Structural Reorganization of Terpolymer Micelles. Macromolecular Rapid Communications, 2013, 34, 1459-1463.	2.0	3
43	Controlled Mineralization of Calcium Carbonate on the Surface of Nonpolar Organic Fibers. Crystal Growth and Design, 2012, 12, 29-32.	1.4	16
44	Janus Nanosheets of Polymer–Inorganic Layered Composites. Macromolecules, 2012, 45, 1460-1467.	2.2	86
45	Modulating lightâ€ŧunable acid sensitivity of a bioinspired polymer simply by adjusting the position of a single methoxy substituent. Journal of Polymer Science Part A, 2012, 50, 495-508.	2.5	3
46	Modulating structural stability and acid sensitivity of photosensitive polymer micelles simply via oneâ€batch UV irradiation. Journal of Polymer Science Part A, 2012, 50, 2878-2888.	2.5	2
47	Superconcentrated Hydrochloric Acid. Journal of Physical Chemistry B, 2011, 115, 7823-7829.	1.2	3
48	Mussel-Inspired Chemistry for Robust and Surface-Modifiable Multilayer Films. Langmuir, 2011, 27, 13684-13691.	1.6	186
49	Sequence control over thermo-triggered micellization and smart nanogels of copolymers based on PEGMA and aldehyde-functionalized monomer. Soft Matter, 2011, 7, 5861.	1.2	9
50	Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydrate Polymers, 2010, 79, 677-684.	5.1	53
51	Effect of Molecular Structure on Thermoresponsive Behaviors of Pyrrolidone-Based Water-Soluble Polymers. Macromolecules, 2010, 43, 4041-4049.	2.2	49
52	Thermally Induced Swellability and Acid-Liable Dynamic Properties of Microgels of Copolymers Based on PEGMA and Aldehyde-Functionalized Monomer. Macromolecules, 2010, 43, 9511-9521.	2.2	21
53	Media-Modulated Interchain or Intrachain Coordination of Amphiphilic Block Copolymer Micelles. Macromolecules, 2010, 43, 6156-6165.	2.2	16
54	Electrochemical synthesis of 1,3,4-thiadiazol-2-ylthio-substituted catechols in aqueous medium. Tetrahedron, 2009, 65, 4505-4512.	1.0	16

#	Article	IF	CITATIONS
55	Facile synthesis of wellâ€defined pHâ€liable Schiffâ€baseâ€type photosensitive polymers via visibleâ€lightâ€activated ambient temperature RAFT polymerization. Journal of Polymer Science Part A, 2009, 47, 6668-6681.	2.5	13
56	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in an amphiphilic diblock copolymer film. Sensors and Actuators B: Chemical, 2009, 138, 244-250.	4.0	22
57	Electrochemical oxidation of catechols in the presence of 4-amino-3-methyl-5-mercapto-1,2,4-triazole bearing two nucleophilic groups. Journal of Electroanalytical Chemistry, 2009, 625, 131-137.	1.9	25
58	One-Pot Electrochemical Synthesis of Fused Indole Derivatives Containing Active Hydroxyl Groups in Aqueous Medium. Journal of Organic Chemistry, 2009, 74, 6386-6389.	1.7	57
59	Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 °C. Chemical Communications, 2009, , 1368.	2.2	76
60	Effect of Mild Visible Light on Rapid Aqueous RAFT Polymerization of Water-Soluble Acrylic Monomers at Ambient Temperature: Initiation and Activation. Macromolecules, 2009, 42, 3917-3926.	2.2	139
61	Electrochemical Synthesis of 5â€Purinâ€6'â€ylthiocatechols in Aqueous Medium. Chinese Journal of Chemistry, 2008, 26, 1651-1655.	2.6	6
62	Facile Synthesis and Photo-Tunable Properties of a Photosensitive Polymer Whose Chromophores Bound with pH-Labile Cyclic Acetal Linkages. Macromolecules, 2008, 41, 4597-4606.	2.2	16
63	Facile Synthesis and Thermoresponsive Behaviors of a Well-Defined Pyrrolidone Based Hydrophilic Polymer. Macromolecules, 2008, 41, 3007-3014.	2.2	73
64	Ambient-Temperature RAFT Polymerization of Styrene and Its Functional Derivatives under Mild Long-Wave UVâ^vis Radiation. Macromolecules, 2007, 40, 9252-9261.	2.2	80
65	Highly Efficient and Well-Controlled Ambient Temperature RAFT Polymerization under Solar Radiation. Macromolecular Rapid Communications, 2007, 28, 725-728.	2.0	52
66	Syntheses and micellar properties of well-defined amphiphilic AB2 and A2B Y-shaped miktoarm star copolymers of É>-caprolactone and 2-(dimethylamino)ethyl methacrylate. Journal of Polymer Science Part A, 2007, 45, 1446-1462.	2.5	55
67	Synthesis of well-defined glycidyl methacrylate based block copolymers with self-activation and self-initiation behaviors via ambient temperature atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 2947-2958.	2.5	23
68	Highly efficient and wellâ€controlled ambient temperature RAFT polymerization of glycidyl methacrylate under visible light radiation. Journal of Polymer Science Part A, 2007, 45, 5091-5102.	2.5	45
69	Synthesis and â€~Schizophrenic' Micellization of Double Hydrophilic AB4Miktoarm Star and AB Diblock Copolymers: Structure and Kinetics of Micellization. Langmuir, 2007, 23, 1114-1122.	1.6	116
70	Toward Rapid and Well-Controlled Ambient Temperature RAFT Polymerization under UVâ^'Vis Radiation:  Effect of Radiation Wave Range. Macromolecules, 2006, 39, 3770-3776.	2.2	185
71	Synthesis and aqueous solution behavior of phosphonate-functionalized chitosans. European Polymer Journal, 2006, 42, 2678-2685.	2.6	22
72	Synthesis, characterization and thermal sensitivity of chitosan-based graft copolymers. Carbohydrate Research, 2006, 341, 2851-2857.	1,1	62

#	Article	IF	CITATIONS
7 3	A brief review of â€~schizophrenic' block copolymers. Reactive and Functional Polymers, 2006, 66, 157-165.	2.0	230
74	Effect of microphase-separation promoters on the shape-memory behavior of polyurethane. Journal of Applied Polymer Science, 2006, 102, 5224-5231.	1.3	37
7 5	Structure and mechanical properties of thermoplastic polyurethane, based on hyperbranched polyesters. Journal of Applied Polymer Science, 2006, 102, 5266-5273.	1.3	36
76	Mesogen-Free Supramolecular Liquid Crystalline State Formed by a Polyelectrolyte/Amphiphile Complex. Macromolecular Rapid Communications, 2005, 26, 226-231.	2.0	17
77	Well-controlled reversible addition–fragmentation chain transfer radical polymerisation under ultraviolet radiation at ambient temperature. Chemical Communications, 2005, , 5287.	2.2	115
78	Synthesis of Well-Defined Y-Shaped Zwitterionic Block Copolymers via Atom-Transfer Radical Polymerization. Macromolecules, 2005, 38, 271-279.	2.2	101
79	Syntheses of Shell Cross-Linked Micelles Using Acidic ABC Triblock Copolymers and Their Application as pH-Responsive Particulate Emulsifiers. Journal of the American Chemical Society, 2005, 127, 7304-7305.	6.6	218
80	Supramolecular complexes: lamellar structure and crystalline transformation. Polymer, 2004, 45, 6261-6268.	1.8	25
81	Direct synthesis and aqueous solution properties of Y-shaped, stimulus-responsive block copolymer surfactantsElectronic Supplementary Information (ESI) available: synthesis and characterisation of diblock copolymers. See http://www.rsc.org/suppdata/cc/b4/b400161c/. Chemical Communications, 2004, .802.	2.2	26
82	Direct Synthesis and Stimulus-Responsive Micellization of Y-Shaped Hydrophilic Block Copolymers. Macromolecules, 2004, 37, 9728-9737.	2.2	118
83	Synthesis of Amphiphilic Graft Copolymers ofn-Butyl Acrylate and Acrylic Acid by Atom Transfer Radical Copolymerization of Macromonomers. Macromolecules, 2004, 37, 7484-7490.	2.2	58
84	A Zwitterionic ABC Triblock Copolymer That Forms a "Trinity―of Micellar Aggregates in Aqueous Solution. Macromolecules, 2004, 37, 7116-7122.	2.2	117
85	Lamellar architecture and crystalline transformation in supramolecular complexes of highly-branched polyethyleneimine-octadecanoic acidElectronic supplementary information (ESI) available: Experimental section. See http://www.rsc.org/suppdata/cc/b3/b303548d/. Chemical Communications. 2003 1932.	2.2	18
86	Different states in orthorhombic crystalline phase of high-density polyethylene. Journal of Molecular Structure, 2001, 562, 19-24.	1.8	19
87	Self-Assembled Mesomorphic Structure in Complexes of Branched Poly(ethyleneimine) with Octadecanoic Acid. Macromolecular Rapid Communications, 2001, 22, 504-507.	2.0	14
88	Crystalline Polymorphism of Alkyl Chains in Supramolecular Complexes of Polyethyleneimine with Octadecanoic Acid. Macromolecular Chemistry and Physics, 2001, 202, 2434-2439.	1.1	17
89	Microstructure-tensile properties relationships of polyurethane/poly(urethane-modified) Tj ETQq1 1 0.784314 rgE	BT/Qverlo	ck ₈ 10 Tf 50
90	Structure and thermal properties of PU/P(BMI-UBMI) IPNs. Journal of Applied Polymer Science, 1998, 68, 1689-1694.	1.3	7