List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262813/publications.pdf Version: 2024-02-01

Anneli Kolive-Viii

#	Article	IF	CITATIONS
1	Matrix effects in pesticide multi-residue analysis by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2008, 1187, 58-66.	1.8	275
2	Electrospray Ionization Efficiency Scale of Organic Compounds. Analytical Chemistry, 2010, 82, 2865-2872.	3.2	232
3	Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part II. Analytica Chimica Acta, 2015, 870, 8-28.	2.6	217
4	Tutorial review on validation of liquid chromatography–mass spectrometry methods: Part I. Analytica Chimica Acta, 2015, 870, 29-44.	2.6	208
5	Sodium adduct formation efficiency in ESI source. Journal of Mass Spectrometry, 2013, 48, 695-702.	0.7	102
6	Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Analytical Chemistry, 2014, 86, 4822-4830.	3.2	99
7	Combating matrix effects in LC/ESI/MS: The extrapolative dilution approach. Analytica Chimica Acta, 2009, 651, 75-80.	2.6	96
8	Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Analytical Chemistry, 2017, 89, 5665-5668.	3.2	84
9	Adduct Formation in ESI/MS by Mobile Phase Additives. Journal of the American Society for Mass Spectrometry, 2017, 28, 887-894.	1.2	84
10	Quantification for non-targeted LC/MS screening without standard substances. Scientific Reports, 2020, 10, 5808.	1.6	80
11	Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds. Rapid Communications in Mass Spectrometry, 2008, 22, 379-384.	0.7	74
12	Effect of Mobile Phase on Electrospray Ionization Efficiency. Journal of the American Society for Mass Spectrometry, 2014, 25, 1853-1861.	1.2	61
13	Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Analytical Chemistry, 2020, 92, 4691-4699.	3.2	61
14	pH Effects on Electrospray Ionization Efficiency. Journal of the American Society for Mass Spectrometry, 2017, 28, 461-469.	1.2	59
15	Tutorial on estimating the limit of detection using LC-MS analysis, part I: Theoretical review. Analytica Chimica Acta, 2016, 942, 23-39.	2.6	50
16	Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules, 2021, 26, 3524.	1.7	47
17	Unified pH Values of Liquid Chromatography Mobile Phases. Analytical Chemistry, 2015, 87, 2623-2630.	3.2	46
18	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	2.6	46

#	Article	IF	CITATIONS
19	Imine-based [2]catenanes in water. Chemical Science, 2018, 9, 1317-1322.	3.7	45
20	Comparison of different methods aiming to account for/overcome matrix effects in LC/ESI/MS on the example of pesticide analyses. Analytical Methods, 2013, 5, 3035.	1.3	44
21	Paper spray ionization mass spectrometry: Study of a method for fast-screening analysis of pesticides in fruits and vegetables. Journal of Food Composition and Analysis, 2015, 41, 221-225.	1.9	43
22	Ionâ€Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angewandte Chemie - International Edition, 2019, 58, 11324-11328.	7.2	43
23	Influence of mobile phase, source parameters and source type on electrospray ionization efficiency in negative ion mode. Journal of Mass Spectrometry, 2016, 51, 596-601.	0.7	41
24	Predicting ESI/MS Signal Change for Anions in Different Solvents. Analytical Chemistry, 2017, 89, 5079-5086.	3.2	36
25	Optimization of electrospray interface and quadrupole ion trap mass spectrometer parameters in pesticide liquid chromatography/electrospray ionization mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 2010, 24, 919-926.	0.7	32
26	Semiâ€quantitative nonâ€ŧarget analysis of water with liquid chromatography/highâ€resolution mass spectrometry: How far are we?. Rapid Communications in Mass Spectrometry, 2019, 33, 54-63.	0.7	31
27	Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater. Analytical and Bioanalytical Chemistry, 2021, 413, 1549-1559.	1.9	29
28	Transferability of the Electrospray Ionization Efficiency Scale between Different Instruments. Journal of the American Society for Mass Spectrometry, 2015, 26, 1923-1930.	1.2	25
29	Standard substances free quantification makes LC/ESI/MS non-targeted screening of pesticides in cereals comparable between labs. Food Chemistry, 2020, 318, 126460.	4.2	25
30	30ÂYears of research on ESI/MS response: Trends, contradictions and applications. Analytica Chimica Acta, 2021, 1152, 238117.	2.6	25
31	Tutorial on estimating the limit of detection using LC-MS analysis, part II: Practical aspects. Analytica Chimica Acta, 2016, 942, 40-49.	2.6	24
32	Study of liquid chromatography/electrospray ionization mass spectrometry matrix effect on the example of glyphosate analysis from cereals. Rapid Communications in Mass Spectrometry, 2011, 25, 3252-3258.	0.7	23
33	Influence of the amino acid composition on the ionization efficiencies of small peptides. Journal of Mass Spectrometry, 2019, 54, 481-487.	0.7	23
34	Feasibility of capillary liquid chromatography–microchip-atmospheric pressure photoionization–mass spectrometry for pesticide analysis in tomato. Analytica Chimica Acta, 2011, 696, 77-83.	2.6	22
35	Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale. Analytical Chemistry, 2016, 88, 3435-3439.	3.2	22
36	Ionâ€Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angewandte Chemie, 2019, 131, 11446-11450.	1.6	20

#	Article	IF	CITATIONS
37	Uncertainty estimation strategies for quantitative non-targeted analysis. Analytical and Bioanalytical Chemistry, 2022, 414, 4919-4933.	1.9	20
38	Risk-based prioritization of suspects detected in riverine water using complementary chromatographic techniques. Water Research, 2021, 204, 117612.	5.3	19
39	Determination of neonicotinoids in Estonian honey by liquid chromatography–electrospray mass spectrometry. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 455-464.	0.7	18
40	Accounting for matrix effects of pesticide residue liquid chromatography/electrospray ionisation mass spectrometric determination by treatment of background mass spectra with chemometric tools. Rapid Communications in Mass Spectrometry, 2011, 25, 1159-1168.	0.7	17
41	Determination of glyphosate in surface water with high organic matter content. Environmental Science and Pollution Research, 2017, 24, 7880-7888.	2.7	16
42	Instrumental techniques in the analysis of natural red textile dyes. Journal of Cultural Heritage, 2020, 42, 19-27.	1.5	16
43	The Evolution of Electrospray Generated Droplets is Not Affected by Ionization Mode. Journal of the American Society for Mass Spectrometry, 2017, 28, 2124-2131.	1.2	15
44	lonization efficiency ladders as tools for choosing ionization mode and solvent in liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1834-1843.	0.7	15
45	Electrospray Ionization Matrix Effect as an Uncertainty Source in HPLC/ESI-MS Pesticide Residue Analysis. Journal of AOAC INTERNATIONAL, 2010, 93, 306-314.	0.7	13
46	Ionisation efficiencies can be predicted in complicated biological matrices: A proof of concept. Analytica Chimica Acta, 2018, 1032, 68-74.	2.6	13
47	Modifying the Acidity of Charged Droplets. ChemistrySelect, 2018, 3, 335-338.	0.7	12
48	Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules, 2022, 27, 1013.	1.7	11
49	Enhanced Nebulization Efficiency of Electrospray Mass Spectrometry: Improved Sensitivity and Detection Limit. Journal of the American Society for Mass Spectrometry, 2012, 23, 2051-2054.	1.2	10
50	ESI outcompetes other ion sources in LC/MS trace analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 3533-3542.	1.9	10
51	Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode. Journal of the American Society for Mass Spectrometry, 2016, 27, 1211-1218.	1.2	9
52	MultiConditionRT: Predicting liquid chromatography retention time for emerging contaminants for a wide range of eluent compositions and stationary phases. Journal of Chromatography A, 2022, 1666, 462867.	1.8	9
53	Potassium iodide catalysis in the alkylation of protected hydrazines. Proceedings of the Estonian Academy of Sciences, 2017, 66, 10.	0.9	6
54	Quantitative and sensitive mapping of imidacloprid on plants using multiphoton electron extraction spectroscopy. Chemical Physics, 2018, 514, 126-131.	0.9	6

#	Article	IF	CITATIONS
55	Ensuring repeatability and robustness of poly(glycidyl methacrylateâ€coâ€ethylene dimethacrylate) <scp>HPLC</scp> monolithic columns of 3 mm id through covalent bonding to the column wall. Journal of Separation Science, 2013, 36, 2458-2463.	1.3	4
56	Characterization of wines with liquid chromatography electrospray ionization mass spectrometry: Quantification of amino acids via ionization efficiency values. Journal of Chromatography A, 2020, 1620, 461012.	1.8	4
57	Quantitative electrospray ionization efficiency scale: 10Âyears after. Rapid Communications in Mass Spectrometry, 2021, 35, e9178.	0.7	4
58	Sodium adduct formation with graph-based machine learning can aid structural elucidation in non-targeted LC/ESI/HRMS. Analytica Chimica Acta, 2022, 1204, 339402.	2.6	4
59	Anion-driven encapsulation of cationic guests inside pyridine[4]arene dimers. Beilstein Journal of Organic Chemistry, 2019, 15, 2486-2492.	1.3	3
60	Electrospray ionization matrix effect as an uncertainty source in HPLC/ESI-MS pesticide residue analysis. Journal of AOAC INTERNATIONAL, 2010, 93, 306-14.	0.7	3
61	Estimation of the concentrations of hydroxylated polychlorinated biphenyls in human serum using ionization efficiency prediction for electrospray. Analytical and Bioanalytical Chemistry, 2022, 414, 7451-7460.	1.9	2
62	"Measurement Science in Chemistry―consortium – a new force in analytical chemistry higher education in Europe. Analytical and Bioanalytical Chemistry, 2010, 397, 1635-1637.	1.9	1
63	Meet the Associate Editors: Anneli Kruve. Rapid Communications in Mass Spectrometry, 2019, 33, 18-19.	0.7	0