
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262778/publications.pdf Version: 2024-02-01

ΡηπιρΙ Μινολλ

#	Article	IF	CITATIONS
1	Plasticity to ocean warming is influenced by transgenerational, reproductive, and developmental exposure in a coral reef fish. Evolutionary Applications, 2022, 15, 249-261.	1.5	16
2	The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecology and Evolution, 2022, 12, e8738.	0.8	3
3	Rapid evolution fuels transcriptional plasticity to ocean acidification. Global Change Biology, 2022, 28, 3007-3022.	4.2	23
4	Editorial: Adaptation and Phenotypic Plasticity to Climate Change. Frontiers in Marine Science, 2022, 9,	1.2	0
5	Ocean Futures for the World's Largest Yellowfin Tuna Population Under the Combined Effects of Ocean Warming and Acidification. Frontiers in Marine Science, 2022, 9, .	1.2	9
6	Parents exposed to warming produce offspring lower in weight and condition. Ecology and Evolution, 2022, 12, .	0.8	6
7	Contrasting effects of constant and fluctuating pCO2 conditions on the exercise physiology of coral reef fishes. Marine Environmental Research, 2021, 163, 105224.	1.1	5
8	Thermal sensitivity of juvenile rabbitfishes Siganus doliatus and S. lineatus (Siganidae): a key role for habitat?. Coral Reefs, 2021, 40, 1307-1320.	0.9	1
9	The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod. Journal of Experimental Biology, 2021, 224, .	0.8	4
10	Diel <i>p</i> CO ₂ fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Molecular Ecology, 2021, 30, 5105-5118.	2.0	21
11	Sex―and timeâ€specific parental effects of warming on reproduction and offspring quality in a coral reef fish. Evolutionary Applications, 2021, 14, 1145-1158.	1.5	15
12	Metabolic Responses of Pacific Crown-of-Thorns Sea Stars (<i>Acanthaster</i> sp.) to Acute Warming. Biological Bulletin, 2021, 241, 347-358.	0.7	9
13	Molecular basis of parental contributions to the behavioural tolerance of elevated pCO ₂ in a coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211931.	1.2	9
14	Elevated seawater pCO2 affects reproduction and embryonic development in the pygmy squid, Idiosepius pygmaeus. Marine Environmental Research, 2020, 153, 104812.	1.1	3
15	Elevated CO2 affects anxiety but not a range of other behaviours in juvenile yellowtail kingfish. Marine Environmental Research, 2020, 157, 104863.	1.1	11
16	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	0.7	62
17	Elevated CO2 and heatwave conditions affect the aerobic and swimming performance of juvenile Australasian snapper. Marine Biology, 2020, 167, 1.	0.7	19
18	Methods matter in repeating ocean acidification studies. Nature, 2020, 586, E20-E24.	13.7	41

#	Article	IF	CITATIONS
19	Predator–prey interactions and metabolic rates are altered in stable and unstable groups in a social fish. Oikos, 2020, 129, 842-852.	1.2	3
20	Diel pCO2 variation among coral reefs and microhabitats at Lizard Island, Great Barrier Reef. Coral Reefs, 2020, 39, 1391-1406.	0.9	17
21	Proteomic Responses to Ocean Acidification in the Brain of Juvenile Coral Reef Fish. Frontiers in Marine Science, 2020, 7, .	1.2	15
22	An uncertain future: Effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys auratus) population. Marine Environmental Research, 2020, 161, 105089.	1.1	5
23	Elevated temperature and CO2 have positive effects on the growth and survival of larval Australasian snapper. Marine Environmental Research, 2020, 161, 105054.	1.1	9
24	An Epigenetic Signature for Within-Generational Plasticity of a Reef Fish to Ocean Warming. Frontiers in Marine Science, 2020, 7, .	1.2	31
25	Beneficial effects of diel CO2 cycles on reef fish metabolic performance are diminished under elevated temperature. Science of the Total Environment, 2020, 735, 139084.	3.9	8
26	The effects of constant and fluctuating elevated pCO2 levels on oxygen uptake rates of coral reef fishes. Science of the Total Environment, 2020, 741, 140334.	3.9	8
27	Toward a Mechanistic Understanding of Marine Invertebrate Behavior at Elevated CO2. Frontiers in Marine Science, 2020, 7, .	1.2	16
28	Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Science Advances, 2020, 6, eaay3423.	4.7	52
29	Testing the Adaptive Potential of Yellowtail Kingfish to Ocean Warming and Acidification. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	11
30	The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Scientific Reports, 2019, 9, 13937.	1.6	25
31	Exposure to Crude Oil from the <i>Deepwater Horizon</i> Oil Spill Impairs Oil Avoidance Behavior without Affecting Olfactory Physiology in Juvenile Mahi-Mahi (<i>Coryphaena hippurus</i>). Environmental Science & Technology, 2019, 53, 14001-14009.	4.6	16
32	Damsels in Distress: Oil Exposure Modifies Behavior and Olfaction in Bicolor Damselfish (<i>Stegastes partitus</i>). Environmental Science & Technology, 2019, 53, 10993-11001.	4.6	28
33	Developmental effects of heatwave conditions on the early life stages of a coral reef fish. Journal of Experimental Biology, 2019, 222, .	0.8	16
34	Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Scientific Reports, 2019, 9, 12728.	1.6	35
35	Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME Journal, 2019, 13, 1635-1638.	4.4	49
36	Aerobic performance of two tropical cephalopod species unaltered by prolonged exposure to		6

projected future carbon dioxide levels. , 2019, 7, coz024.

#	Article	IF	CITATIONS
37	A negative correlation between behavioural and physiological performance under ocean acidification and warming. Scientific Reports, 2019, 9, 4265.	1.6	28
38	Diel CO ₂ cycles and parental effects have similar benefits to growth of a coral reef fish under ocean acidification. Biology Letters, 2019, 15, 20180724.	1.0	23
39	Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180174.	1.8	371
40	Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180186.	1.8	145
41	Neural effects of elevated CO2 in fish may be amplified by a vicious cycle. , 2019, 7, coz100.		29
42	Elevated CO2 and food ration affect growth but not the size-based hierarchy of a reef fish. Scientific Reports, 2019, 9, 19706.	1.6	6
43	Adaptation and evolutionary responses to high CO2. Fish Physiology, 2019, 37, 369-395.	0.2	6
44	Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. Fish Physiology, 2019, , 323-368.	0.2	36
45	Finding Nemo's Genes: A chromosomeâ€scale reference assembly of the genome of the orange clownfish <i>Amphiprion percula</i> . Molecular Ecology Resources, 2019, 19, 570-585.	2.2	55
46	Consequences of Anthropogenic Changes in the Sensory Landscape of Marine Animals. , 2019, , 229-264.		15
47	Organ health and development in larval kingfish are unaffected by ocean acidification and warming. PeerJ, 2019, 7, e8266.	0.9	6
48	Predatory strategies and behaviours in cephalopods are altered by elevated <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 2585-2596.	4.2	24
49	Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations. , 2018, 6, cox077.		19
50	Temperature influences habitat preference of coral reef fishes: Will generalists become more specialised in a warming ocean?. Global Change Biology, 2018, 24, 3158-3169.	4.2	17
51	Diel CO2 cycles do not modify juvenile growth, survival and otolith development in two coral reef fish under ocean acidification. Marine Biology, 2018, 165, 1.	0.7	21
52	†Stick with your own kind, or hang with the locals?' Implications of shoaling strategy for tropical reef fish on a rangeâ€expansion frontline. Global Change Biology, 2018, 24, 1663-1672.	4.2	32
53	An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology and Evolution, 2018, 2, 334-342.	3.4	75
54	The epigenetic landscape of transgenerational acclimation to ocean warming. Nature Climate Change, 2018, 8, 504-509.	8.1	124

#	Article	IF	CITATIONS
55	In hot water: sustained ocean warming reduces survival of a low-latitude coral reef fish. Marine Biology, 2018, 165, 1.	0.7	42
56	Absence of cellular damage in tropical newly hatched sharks (Chiloscyllium plagiosum) under ocean acidification conditions. Cell Stress and Chaperones, 2018, 23, 837-846.	1.2	22
57	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
58	Transgenerational plasticity and climate change experiments: Where do we go from here?. Global Change Biology, 2018, 24, 13-34.	4.2	320
59	Molecular Response to Extreme Summer Temperatures Differs Between Two Genetically Differentiated Populations of a Coral Reef Fish. Frontiers in Marine Science, 2018, 5, .	1.2	29
60	Elevated Temperature Does Not Substantially Modify the Interactive Effects Between Elevated CO2 and Diel CO2 Cycles on the Survival, Growth and Behavior of a Coral Reef Fish. Frontiers in Marine Science, 2018, 5, .	1.2	20
61	Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Molecular Ecology, 2018, 27, 4516-4528.	2.0	37
62	Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish. Scientific Reports, 2018, 8, 7795.	1.6	20
63	Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish. Global Change Biology, 2018, 24, 4368-4385.	4.2	63
64	Correlated Effects of Ocean Acidification and Warming on Behavioral and Metabolic Traits of a Large Pelagic Fish. Diversity, 2018, 10, 35.	0.7	41
65	Strong effects of coral species on the diversity and structure of reef fish communities: A multi-scale analysis. PLoS ONE, 2018, 13, e0202206.	1.1	37
66	Food ration does not influence the effect of elevated CO2 on antipredator behaviour of a reef fish. Marine Ecology - Progress Series, 2018, 586, 155-165.	0.9	20
67	Climate change and the evolution of reef fishes: past and future. Fish and Fisheries, 2017, 18, 22-39.	2.7	45
68	Ocean acidification alters predator behaviour and reduces predation rate. Biology Letters, 2017, 13, 20160797.	1.0	43
69	Heritability of behavioural tolerance to high <scp>CO</scp> ₂ in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evolutionary Applications, 2017, 10, 682-693.	1.5	41
70	Biological responses of sharks to ocean acidification. Biology Letters, 2017, 13, 20160796.	1.0	69
71	Effects of climate change on coral grouper (Plectropomus spp.) and possible adaptation options. Reviews in Fish Biology and Fisheries, 2017, 27, 297-316.	2.4	28
72	Rapid adaptive responses to climate change in corals. Nature Climate Change, 2017, 7, 627-636.	8.1	327

5

#	Article	IF	CITATIONS
73	Diel CO2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Scientific Reports, 2017, 7, 10153.	1.6	62
74	New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification. Biology Letters, 2017, 13, 20170438.	1.0	5
75	Predation in High CO2 Waters: Prey Fish from High-Risk Environments are Less Susceptible to Ocean Acidification. Integrative and Comparative Biology, 2017, 57, 55-62.	0.9	11
76	Warming has a greater effect than elevated CO ₂ on predator–prey interactions in coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170784.	1.2	44
77	Depth distribution and abundance of a coral-associated reef fish: roles of recruitment and post-recruitment processes. Coral Reefs, 2017, 36, 157-166.	0.9	13
78	Potential for adaptation to climate change in a coral reef fish. Global Change Biology, 2017, 23, 307-317.	4.2	87
79	Thermosensitive period of sex determination in the coral-reef damselfish Acanthochromis polyacanthus and the implications of projected ocean warming. Coral Reefs, 2017, 36, 131-138.	0.9	4
80	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	8.1	164
81	Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods. PLoS ONE, 2017, 12, e0185469.	1.1	15
82	Extended exposure to elevated temperature affects escape response behaviour in coral reef fishes. PeerJ, 2017, 5, e3652.	0.9	14
83	Responses of neurogenesis and neuroplasticity related genes to elevated CO ₂ levels in the brain of three teleost species. Biology Letters, 2017, 13, 20170240.	1.0	13
84	Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds. PLoS ONE, 2017, 12, e0170838.	1.1	15
85	Habitat morphology constrains the depth distribution and growth rate of a coral-associated reef fish. Marine Ecology - Progress Series, 2017, 576, 43-53.	0.9	2
86	Effects of elevated CO ₂ on predator avoidance behaviour by reef fishes is not altered by experimental test water. PeerJ, 2016, 4, e2501.	0.9	36
87	Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. , 2016, 4, cow052.		20
88	Duration of Exposure to Elevated Temperature Affects Competitive Interactions in Juvenile Reef Fishes. PLoS ONE, 2016, 11, e0164505.	1.1	13
89	Nearâ€future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod <i>Heliconoides inflatus</i> . Global Change Biology, 2016, 22, 3888-3900.	4.2	68
90	Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to communityâ€level responses. Global Change Biology, 2016, 22, 974-989.	4.2	291

#	Article	IF	CITATIONS
91	Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. Scientific Reports, 2016, 6, 33216.	1.6	70
92	Predicting range-shift success potential for tropical marine fishes using external morphology. Biology Letters, 2016, 12, 20160505.	1.0	19
93	Shoaling reduces metabolic rate in a gregarious coral reef fish species. Journal of Experimental Biology, 2016, 219, 2802-2805.	0.8	61
94	Molecular signatures of transgenerational response to ocean acidification in a species of reefÂfish. Nature Climate Change, 2016, 6, 1014-1018.	8.1	103
95	Transgenerational plasticity of reproduction depends on rate of warming across generations. Evolutionary Applications, 2016, 9, 1072-1081.	1.5	80
96	Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. Journal of Environmental Management, 2016, 182, 641-650.	3.8	22
97	Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Marine Biology, 2016, 163, 1.	0.7	49
98	Foraging behaviour of the epaulette shark Hemiscyllium ocellatum is not affected by elevated CO2. ICES Journal of Marine Science, 2016, 73, 633-640.	1.2	43
99	Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs, 2016, 35, 485-493.	0.9	24
100	Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Marine Pollution Bulletin, 2016, 105, 558-565.	2.3	38
101	Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES Journal of Marine Science, 2016, 73, 641-649.	1.2	44
102	Coral colony size and structure as determinants of habitat use and fitness of coral-dwelling fishes. Marine Ecology - Progress Series, 2016, 553, 163-172.	0.9	20
103	Reef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species. PLoS ONE, 2015, 10, e0124054.	1.1	40
104	The Prevalence and Importance of Competition Among Coral Reef Fishes. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 169-190.	3.8	48
105	Ocean acidification boosts larval fish development but reduces the window of opportunity for successful settlement. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151954.	1.2	47
106	Survival of the fittest. Nature Climate Change, 2015, 5, 102-103.	8.1	3
107	Development in a warm future ocean may enhance performance in some species. Journal of Experimental Marine Biology and Ecology, 2015, 472, 119-125.	0.7	15
108	Molecular processes of transgenerational acclimation to a warming ocean. Nature Climate Change, 2015, 5, 1074-1078.	8.1	128

#	Article	IF	CITATIONS
109	Feeling the heat: the effect of acute temperature changes on predator–prey interactions in coral reef fish. , 2015, 3, cov011.		74
110	Salmon behaving badly. Nature Climate Change, 2015, 5, 915-916.	8.1	2
111	A climate-informed, ecosystem approach to fisheries management. Marine Policy, 2015, 57, 182-192.	1.5	60
112	Competitive mechanisms change with ontogeny in coralâ€dwelling gobies. Ecology, 2015, 96, 3090-3101.	1.5	18
113	Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications, 2015, 25, 603-620.	1.8	68
114	Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios. Global Change Biology, 2015, 21, 2954-2962.	4.2	50
115	Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch <i>Gibberulus gibberulus gibbosus</i> . Journal of Experimental Biology, 2015, 218, 2991-3001.	0.8	25
116	You are what you eat: diet-induced chemical crypsis in a coral-feeding reef fish. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141887.	1.2	22
117	Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Global Change Biology, 2015, 21, 1848-1855.	4.2	71
118	Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology, 2015, 21, 1454-1462.	4.2	88
119	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	1.5	237
120	Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Marine Ecology - Progress Series, 2015, 521, 129-141.	0.9	35
121	Reproductive Acclimation to Increased Water Temperature in a Tropical Reef Fish. PLoS ONE, 2014, 9, e97223.	1.1	70
122	Early Life History and Fisheries Oceanography: New Questions in a Changing World. Oceanography, 2014, 27, 26-41.	0.5	103
123	Transgenerational acclimation of fishes to climate change and ocean acidification. F1000prime Reports, 2014, 6, 99.	5.9	132
124	A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2. , 2014, 2, cou047-cou047.		50
125	Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Global Change Biology, 2014, 20, 1055-1066.	4.2	206
126	Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs, 2014, 33, 891-896.	0.9	23

PHILIP L MUNDAY

#	Article	IF	CITATIONS
127	Response to â€~The importance of accurate CO2 dosing and measurement in ocean acidification studies'. Journal of Experimental Biology, 2014, 217, 1828-1829.	0.8	14
128	Impaired learning of predators and lower prey survival under elevated <scp><scp>CO₂</scp></scp> : a consequence of neurotransmitter interference. Global Change Biology, 2014, 20, 515-522.	4.2	180
129	Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia, 2014, 174, 99-107.	0.9	37
130	From cooperation to combat: adverse effect of thermal stress in a symbiotic coral-crustacean community. Oecologia, 2014, 174, 1187-1195.	0.9	16
131	Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival. Global Change Biology, 2014, 20, 724-729.	4.2	27
132	Evolution in an acidifying ocean. Trends in Ecology and Evolution, 2014, 29, 117-125.	4.2	324
133	Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid <i>ldiosepius pygmaeus</i> . Biology Open, 2014, 3, 1063-1070.	0.6	39
134	Parental effects improve escape performance of juvenile reef fish in a high-CO ₂ world. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132179.	1.2	103
135	Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology, 2014, 217, 323-326.	0.8	113
136	Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Climate Change, 2014, 4, 487-492.	8.1	152
137	Habitat degradation modifies the strength of interspecific competition in coral dwelling damselfishes. Ecology, 2014, 95, 3056-3067.	1.5	29
138	Experimental evaluation of diversity–productivity relationships in a coral reef fish assemblage. Oecologia, 2014, 176, 237-249.	0.9	6
139	Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Climate Change, 2014, 4, 1086-1089.	8.1	131
140	Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132377.	1.2	117
141	Alterations in gill structure in tropical reef fishes as a result of elevated temperatures. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 175, 64-71.	0.8	36
142	Shifting from Right to Left: The Combined Effect of Elevated CO2 and Temperature on Behavioural Lateralization in a Coral Reef Fish. PLoS ONE, 2014, 9, e87969.	1.1	58
143	Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Marine Biology, 2013, 160, 2137-2144.	0.7	94
144	Habitat preferences of coral-associated fishes are altered by short-term exposure to elevated CO2. Marine Biology, 2013, 160, 1955-1962.	0.7	26

PHILIP L MUNDAY

#	Article	IF	CITATIONS
145	Towards improved socio-economic assessments of ocean acidification's impacts. Marine Biology, 2013, 160, 1773-1787.	0.7	48
146	Strong intraspecific competition and habitat selectivity influence abundance of a coral-dwelling damselfish. Journal of Experimental Marine Biology and Ecology, 2013, 448, 85-92.	0.7	28
147	The role of CO ₂ variability and exposure time for biological impacts of ocean acidification. Geophysical Research Letters, 2013, 40, 4685-4688.	1.5	52
148	Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis. Coral Reefs, 2013, 32, 85-90.	0.9	30
149	Increased <scp><scp>CO₂</scp> stimulates reproduction in a coral reef fish. Global Change Biology, 2013, 19, 3037-3045.</scp>	4.2	53
150	Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 482-489.	0.8	62
151	Phylogenetic evidence for recent diversification of obligate coral-dwelling gobies compared with their host corals. Molecular Phylogenetics and Evolution, 2013, 69, 123-132.	1.2	19
152	Within olony feeding selectivity by a corallivorous reef fish: foraging to maximize reward?. Ecology and Evolution, 2013, 3, 4109-4118.	0.8	8
153	Predicting evolutionary responses to climate change in the sea. Ecology Letters, 2013, 16, 1488-1500.	3.0	340
154	Prey selectivity affects reproductive success of a corallivorous reef fish. Oecologia, 2013, 172, 409-416.	0.9	20
155	Habitat preferences of a corallivorous reef fish: predation risk versus food quality. Coral Reefs, 2013, 32, 613-622.	0.9	31
156	Elevated CO2 enhances aerobic scope of a coral reef fish. , 2013, 1, cot023-cot023.		70
157	Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability. , 2013, 1, cot024-cot024.		63
158	Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120447.	1.8	106
159	Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated <scp>CO</scp> ₂ on fish?. Ecology and Evolution, 2013, 3, 3565-3575.	0.8	26
160	Ocean acidification reverses competition for space as habitats degrade. Scientific Reports, 2013, 3, 3280.	1.6	46
161	<i>Otx2</i> expression and implications for olfactory imprinting in the anemonefish, <i>Amphiprion percula</i> . Biology Open, 2013, 2, 907-915.	0.6	3
162	Relative Importance of Coral Cover, Habitat Complexity and Diversity in Determining the Structure of Reef Fish Communities. PLoS ONE, 2013, 8, e83178.	1.1	147

#	Article	IF	CITATIONS
163	Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 2013, 8, e58520.	1.1	96
164	Social group entry rules may limit population resilience to patchy habitat disturbance. Marine Ecology - Progress Series, 2013, 493, 237-242.	0.9	9
165	Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?. Journal of Experimental Biology, 2012, 215, 3865-3873.	0.8	152
166	Influence of seasonal and latitudinal temperature variation on early life-history traits of a coral reef fish. Marine and Freshwater Research, 2012, 63, 856.	0.7	23
167	CONCORDANCE BETWEEN GENETIC AND SPECIES DIVERSITY IN CORAL REEF FISHES ACROSS THE PACIFIC OCEAN BIODIVERSITY GRADIENT. Evolution; International Journal of Organic Evolution, 2012, 66, 3902-3917.	1.1	29
168	Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Climate Change, 2012, 2, 30-32.	8.1	368
169	Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biology Letters, 2012, 8, 78-81.	1.0	171
170	Near-future carbon dioxide levels alter fishÂbehaviour by interferingÂwith neurotransmitter function. Nature Climate Change, 2012, 2, 201-204.	8.1	487
171	Climate change may affect fish through an interaction of parental and juvenile environments. Coral Reefs, 2012, 31, 753-762.	0.9	17
172	Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change, 2012, 2, 858-861.	8.1	245
173	Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidification, 2012, 1, 1-5.	5.0	40
174	Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecology and Evolution, 2012, 2, 2168-2180.	0.8	80
175	Biogeography and the structure of coral reef fish communities on isolated islands. Journal of Biogeography, 2012, 39, 130-139.	1.4	30
176	Reef fishes innately distinguish predators based on olfactory cues associated with recent prey items rather than individual species. Animal Behaviour, 2012, 84, 45-51.	0.8	48
177	Effects of ocean acidification on visual risk assessment in coral reef fishes. Functional Ecology, 2012, 26, 553-558.	1.7	107
178	Thermal sensitivity does not determine acclimation capacity for a tropical reef fish. Journal of Animal Ecology, 2012, 81, 1126-1131.	1.3	65
179	High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Marine Pollution Bulletin, 2012, 64, 1519-1528.	2.3	175
180	Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. Journal of Experimental Marine Biology and Ecology, 2012, 412, 46-51.	0.7	132

#	Article	IF	CITATIONS
181	Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. Journal of Experimental Marine Biology and Ecology, 2012, 414-415, 62-68.	0.7	34
182	Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs, 2012, 31, 229-238.	0.9	60
183	Homing ability of adult cardinalfish is affected by elevated carbon dioxide. Oecologia, 2012, 168, 269-276.	0.9	77
184	Effects of Ocean Acidification on Learning in Coral Reef Fishes. PLoS ONE, 2012, 7, e31478.	1.1	111
185	Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters, 2011, 7, 917-920.	1.0	219
186	Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research, 2011, 62, 1015.	0.7	491
187	Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology - Progress Series, 2011, 423, 211-221.	0.9	119
188	Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology, 2011, 92, 2285-2298.	1.5	124
189	Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences, 2011, 8, 1631-1641.	1.3	89
190	Putting prey and predator into the CO2 equation - qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters, 2011, 14, 1143-1148.	3.0	150
191	Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Global Change Biology, 2011, 17, 1712-1719.	4.2	156
192	Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Global Change Biology, 2011, 17, 2980-2986.	4.2	161
193	Extinction Risk in Endemic Marine Fishes. Conservation Biology, 2011, 25, 1053-1055.	2.4	34
194	Terrestrial chemical cues help coral reef fish larvae locate settlement habitat surrounding islands. Ecology and Evolution, 2011, 1, 586-595.	0.8	27
195	Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce. Coral Reefs, 2011, 30, 719-727.	0.9	41
196	Ontogenetic changes in responses to settlement cues by Anemonefish. Coral Reefs, 2011, 30, 903-910.	0.9	25
197	Coral obligate filefish masquerades as branching coral. Coral Reefs, 2011, 30, 803-803.	0.9	8
198	Ocean Acidification Affects Prey Detection by a Predatory Reef Fish. PLoS ONE, 2011, 6, e22736.	1.1	157

#	Article	IF	CITATIONS
199	Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialisation. Coral Reefs, 2010, 29, 1-11.	0.9	53
200	Influence of habitat degradation on fish replenishment. Coral Reefs, 2010, 29, 537-546.	0.9	68
201	Effects of elevated temperature on coral reef fishes: Loss of hypoxia tolerance and inability to acclimate. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 156, 389-393.	0.8	102
202	Diets of coralâ€dwelling fishes of the genus <i>Gobiodon</i> with evidence of corallivory. Journal of Fish Biology, 2010, 76, 2578-2583.	0.7	23
203	Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecology Letters, 2010, 13, 68-75.	3.0	444
204	Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures. PLoS ONE, 2010, 5, e13299.	1.1	88
205	Replenishment of fish populations is threatened by ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12930-12934.	3.3	399
206	Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Journal of Experimental Biology, 2010, 213, 894-900.	0.8	82
207	Differing Mechanisms Underlie Sexual Size-Dimorphism in Two Populations of a Sex-Changing Fish. PLoS ONE, 2010, 5, e10616.	1.1	22
208	Bidirectional Sex Change in Marine Fishes. , 2010, , 240-271.		21
209	Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology - Progress Series, 2010, 401, 233-243.	0.9	190
210	Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behavioral Ecology, 2009, 20, 1204-1210.	1.0	124
211	Coral Bleaching and Consequences for Motile Reef Organisms: Past, Present and Uncertain Future Effects. Ecological Studies, 2009, , 139-158.	0.4	46
212	Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3275-3283.	1.2	157
213	Climate change and coral reef connectivity. Coral Reefs, 2009, 28, 379-395.	0.9	242
214	Growth acceleration, behaviour and otolith check marks associated with sex change in the wrasse Halichoeres miniatus. Coral Reefs, 2009, 28, 623-634.	0.9	23
215	Elevated temperature reduces the respiratory scope of coral reef fishes. Global Change Biology, 2009, 15, 1405-1412.	4.2	220
216	Equivalent wholeâ€body concentrations of 11â€ketotestosterone in female and male coral goby <i>Gobiodon erythrospilus</i> , a bidirectional sexâ€changing fish. Journal of Fish Biology, 2009, 75, 685-692.	0.7	9

#	Article	IF	CITATIONS
217	Parental effects on offspring life histories: when are they important?. Biology Letters, 2009, 5, 262-265.	1.0	68
218	Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1848-1852.	3.3	587
219	Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology - Progress Series, 2009, 388, 235-242.	0.9	195
220	Coral-dwelling fishes resistant to bleaching but not to mortality of host corals. Marine Ecology - Progress Series, 2009, 394, 215-222.	0.9	30
221	Elevated temperature restricts growth potential of the coral reef fish Acanthochromis polyacanthus. Coral Reefs, 2008, 27, 927-931.	0.9	115
222	Climate change and the future for coral reef fishes. Fish and Fisheries, 2008, 9, 261-285.	2.7	449
223	Fasting or feasting in a fish social hierarchy. Current Biology, 2008, 18, R372-R373.	1.8	88
224	Parental condition affects early life-history of a coral reef fish. Journal of Experimental Marine Biology and Ecology, 2008, 360, 109-116.	0.7	69
225	Monogamy when there is potential for polygyny: tests of multiple hypotheses in a group-living fish. Behavioral Ecology, 2008, 19, 353-361.	1.0	48
226	Coral reef fish smell leaves to find island homes. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2831-2839.	1.2	120
227	Effects Of Climate-Induced Coral Bleaching On Coral-Reef Fishes 'Ä,î Ecological And Economic Consequences. Oceanography and Marine Biology, 2008, , 251-296.	1.0	351
228	Niche shifts and local competition between two coral reef fishes at their geographic boundary. Marine and Freshwater Research, 2007, 58, 1120.	0.7	7
229	The morphology and ultrastructure of the peripheral olfactory organ in newly metamorphosed coral-dwelling gobies, Paragobiodon xanthosomus Bleeker (Gobiidae, Teleostei). Tissue and Cell, 2007, 39, 335-342.	1.0	14
230	The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1093-1099.	1.2	127
231	Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes. Coral Reefs, 2007, 26, 241-248.	0.9	23
232	Habitat patch size and mating system as determinants of social group size in coral-dwelling fishes. Coral Reefs, 2007, 26, 165-174.	0.9	43
233	Evolution of mating systems in coral reef gobies and constraints on mating system plasticity. Coral Reefs, 2007, 26, 585-595.	0.9	26
234	Cooperative growth regulation in coral-dwelling fishes. Biology Letters, 2006, 2, 355-358.	1.0	22

#	Article	IF	CITATIONS
235	Diversity and flexibility of sex-change strategies in animals. Trends in Ecology and Evolution, 2006, 21, 89-95.	4.2	317
236	Development and characterization of eight new microsatellite markers for the haremic sandperch, Parapercis cylindrica (family Pinguipedidae). Molecular Ecology Notes, 2006, 6, 1036-1038.	1.7	1
237	A social basis for the development of primary males in a sex-changing fish. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2845-2851.	1.2	87
238	Phylogeography of colour polymorphism in the coral reef fish Pseudochromis fuscus, from Papua New Guinea and the Great Barrier Reef. Coral Reefs, 2005, 24, 392-402.	0.9	53
239	Habitat Patch Size, Facultative Monogamy and Sex Change in a Coral-dwelling Fish, Caracanthus unipinna. Environmental Biology of Fishes, 2005, 74, 141-150.	0.4	34
240	Genetic and Ecological Characterisation of Colour Dimorphism in a Coral Reef Fish. Environmental Biology of Fishes, 2005, 74, 175-183.	0.4	17
241	Aromatase pathway mediates sex change in each direction. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1399-1405.	1.2	78
242	Bi-Directional Sex Change in Coral Reef Fishes from the Family Pseudochromidae: An Experimental Evaluation. Zoological Science, 2005, 22, 797-803.	0.3	30
243	Life-history characteristics of coral reef gobies. I. Growth and life-span. Marine Ecology - Progress Series, 2005, 290, 207-221.	0.9	39
244	Life-history characteristics of coral reef gobies. II. Mortality rate, mating system and timing of maturation. Marine Ecology - Progress Series, 2005, 290, 223-237.	0.9	24
245	COMPETITIVE COEXISTENCE OF CORAL-DWELLING FISHES: THE LOTTERY HYPOTHESIS REVISITED. Ecology, 2004, 85, 623-628.	1.5	116
246	Habitat loss, resource specialization, and extinction on coral reefs. Global Change Biology, 2004, 10, 1642-1647.	4.2	390
247	Sex change and relative body size in animals. Nature, 2004, 428, 1-1.	13.7	15
248	Evidence for Sympatric Speciation by Host Shift in the Sea. Current Biology, 2004, 14, 1498-1504.	1.8	117
249	Unexpected patterns of genetic structuring among locations but not colour morphs in Acropora nasuta (Cnidaria; Scleractinia). Molecular Ecology, 2004, 13, 9-20.	2.0	57
250	Social induction of maturation and sex determination in a coral reef fish. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2109-2114.	1.2	57
251	Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. Journal of Experimental Biology, 2004, 207, 33-39.	0.8	46
252	Sex-specific growth effects in protogynous hermaphrodites. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 323-327.	0.7	34

#	Article	IF	CITATIONS
253	Intraspecific competition controls spatial distribution and social organisation of the coral-dwelling goby Gobiodon histrio. Marine Ecology - Progress Series, 2004, 278, 253-259.	0.9	62
254	The Toxicity of Skin Secretions from Coral-Dwelling Gobies and their Potential Role as a Predator Deterrent. Environmental Biology of Fishes, 2003, 67, 359-367.	0.4	26
255	Ecological mechanisms for coexistence of colour polymorphism in a coral-reef fish: an experimental evaluation. Oecologia, 2003, 137, 519-526.	0.9	42
256	Steroid hormone levels and bi-directional sex change in Gobiodon histrio. Journal of Fish Biology, 2003, 62, 153-167.	0.7	38
257	Skin toxins and external parasitism of coral-dwelling gobies. Journal of Fish Biology, 2003, 62, 976-981.	0.7	36
258	Conservation of coral reef biodiversity: a comparison of reserve selection procedures for corals and fishes. Biological Conservation, 2003, 111, 53-62.	1.9	88
259	Growth trades off with habitat specialization. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S175-7.	1.2	71
260	Rarity in Coral Reef Fish Communities. , 2002, , 81-101.		85
261	Habitat use, social organization and reproductive biology of the seawhip goby, Bryaninops yongei. Marine and Freshwater Research, 2002, 53, 769.	0.7	28
262	Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs, 2002, 21, 105-116.	0.9	70
263	The energetic cost of protogynous versus protandrous sex change in the bi-directional sex-changing fish Gobiodon histrio. Marine Biology, 2002, 141, 1011-1017.	0.7	17
264	Bi-directional sex change: testing the growth-rate advantage model. Behavioral Ecology and Sociobiology, 2002, 52, 247-254.	0.6	92
265	INTERSPECIFIC COMPETITION AND COEXISTENCE IN A GUILD OF CORAL-DWELLING FISHES. Ecology, 2001, 82, 2177-2189.	1.5	159
266	Recovery of corals after volcanic eruptions in Papua New Guinea. Coral Reefs, 2001, 20, 24-24.	0.9	11
267	Fitness consequences of habitat use and competition among coral-dwelling fishes. Oecologia, 2001, 128, 585-593.	0.9	110
268	INTERSPECIFIC COMPETITION AND COEXISTENCE IN A GUILD OF CORAL-DWELLING FISHES. , 2001, 82, 2177.		5
269	Interactions Between Habitat Use and Patterns of Abundance in Coral-dwelling Fishes of the Genus Gobiodon. Environmental Biology of Fishes, 2000, 58, 355-369.	0.4	70
270	Validation of otolith growth-increment periodicity in tropical gobies. Marine Biology, 2000, 137, 715-726.	0.7	55

#	Article	IF	CITATIONS
271	Settlement strategies and distribution patterns of coral-reef fishes. Journal of Experimental Marine Biology and Ecology, 1998, 225, 219-238.	0.7	150
272	Bi-directional sex change in a coral-dwelling goby. Behavioral Ecology and Sociobiology, 1998, 43, 371-377.	0.6	132
273	Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. Journal of Fish Biology, 1997, 51, 931-938.	0.7	242
274	Habitat specialisation and the distribution and abundance of coral-dwelling gobies. Marine Ecology - Progress Series, 1997, 152, 227-239.	0.9	197
275	Effects of climate change on coral reef fishes. , 0, , 127-134.		10