
Haimin Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262653/publications.pdf Version: 2024-02-01

Ηλιμινι Ζηλι

#	Article	IF	CITATIONS
1	Room temperature nanoindentation creep behavior of detonation sprayed Fe-based amorphous coating. Intermetallics, 2022, 141, 107426.	3.9	9
2	Corrosion resistance mechanisms of detonation sprayed Fe-based amorphous coating on AZ31B magnesium alloy. Journal of Non-Crystalline Solids, 2022, 576, 121276.	3.1	27
3	Characterizations the deposition behavior and mechanical properties of detonation sprayed Fe-based amorphous coatings. Journal of Materials Research and Technology, 2022, 18, 2506-2518.	5.8	15
4	Optimization of the HVOF Spray Deposition of Ni3Al Coatings on Stainless Steel. Journal of Thermal Spray Technology, 2022, 31, 1598-1608.	3.1	3
5	Rate-dependent nanoindentation creep behavior of a Fe-based amorphous coating. Journal of Non-Crystalline Solids, 2022, 590, 121668.	3.1	3
6	Microstructure and tribological properties of Fe-based amorphous coating prepared by detonation spray. Journal of Non-Crystalline Solids, 2021, 556, 120564.	3.1	9
7	Study of Dry Sliding Wear Behavior of a Fe-Based Amorphous Coating Synthesized by Detonation Spraying on an AZ31B Magnesium Alloy. Journal of Materials Engineering and Performance, 2021, 30, 905-917.	2.5	8
8	Improving the wear performance of a commercial Vit 1 amorphous alloy by a cryogenic cycling treatment. Journal of Materials Science, 2021, 56, 8276-8287.	3.7	12
9	Strategy for improving the wear-resistance properties of detonation sprayed Fe-based amorphous coatings by cryogenic cycling treatment. Surface and Coatings Technology, 2021, 410, 126962.	4.8	23
10	Dry sliding wear mechanisms of Ce in aluminum bronze coatings. Journal of Materials Science, 2020, 55, 3045-3055.	3.7	2
11	The Corrosion Resistance Mechanism of Fe-Based Amorphous Coatings Synthesised by Detonation Gun Spraying. Journal of Materials Engineering and Performance, 2020, 29, 3921-3929.	2.5	21
12	Microstructure and corrosion resistance of Fe-based amorphous coating prepared by detonation spray. Surface and Coatings Technology, 2020, 399, 126096.	4.8	28
13	Enhancing the plasticity of a Ti-based bulk metallic glass composite by cryogenic cycling treatments. Journal of Alloys and Compounds, 2020, 835, 155247.	5.5	24
14	Dry sliding wear behaviors of Fe-based amorphous metallic coating synthesized by d-gun spray. Journal of Non-Crystalline Solids, 2020, 537, 120018.	3.1	37
15	Microstructure and tribological properties of laser in-situ synthesized Ti3Al composite coating on Ti-6Al-4V. Surface and Coatings Technology, 2020, 395, 125944.	4.8	22
16	ldentifying the origin of strain rate sensitivity in a high entropy bulk metallic glass. Scripta Materialia, 2019, 164, 121-125.	5.2	65
17	Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. Journal of Alloys and Compounds, 2019, 780, 671-679.	5.5	55
18	Modulating mechanical properties of Ti-based bulk metallic glass composites by tailoring dendrite composition with Sn addition. Journal of Alloys and Compounds, 2018, 745, 16-25.	5.5	18

Ηαιμιν Ζηαι

#	Article	IF	CITATIONS
19	Tailoring shear banding behaviors in high entropy bulk metallic glass by minor Sn addition: A nanoindentation study. Journal of Alloys and Compounds, 2018, 762, 422-430.	5.5	21
20	Strain rate sensitivity and deformation behavior in a Ti-based bulk metallic glass composite. Journal of Non-Crystalline Solids, 2017, 471, 128-136.	3.1	10
21	Effect of transition metal elements (Cu, Ni, Co and Fe) on the mechanical properties of Ti-based bulk metallic glass composites. Journal of Alloys and Compounds, 2017, 694, 1-9.	5.5	21
22	Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites. Materials and Design, 2016, 110, 782-789.	7.0	31
23	A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility. Journal of Alloys and Compounds, 2016, 685, 322-330.	5.5	58
24	Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys. Acta Materialia, 2014, 67, 220-231.	7.9	13
25	Modeling rapid solidification of multi-component concentrated alloys. Acta Materialia, 2013, 61, 1359-1372.	7.9	38
26	Modeling dendrite growth in undercooled concentrated multi-component alloys. Acta Materialia, 2013, 61, 4254-4265.	7.9	31
27	Application of the maximal entropy production principle to rapid solidification: A sharp interface model. Acta Materialia, 2012, 60, 1444-1454.	7.9	55
28	Oscillatory morphological stability for rapid directional solidification: Effect of non-linear liquidus and solidus. Acta Materialia, 2011, 59, 5859-5867.	7.9	10