
Robin Augustine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International Journal of Biological Macromolecules, 2018, 120, 385-393.	3.6	323
2	Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 2014, 21, 1.	1.2	242
3	Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. International Journal of Biological Macromolecules, 2020, 156, 153-170.	3.6	171
4	Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances, 2014, 4, 24777.	1.7	170
5	Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology, 2020, 9, 182.	1.3	168
6	<p>Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 9603-9617.	3.3	161
7	Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Advances, 2014, 4, 51528-51536.	1.7	159
8	Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Research, 2017, 10, 3358-3376.	5.8	146
9	Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and Bioprocess Engineering, 2012, 17, 835-840.	1.4	141
10	Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Applied Nanoscience (Switzerland), 2016, 6, 337-344.	1.6	138
11	Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications, 2020, 25, 101692.	0.9	131
12	Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in Biomaterials, 2018, 7, 77-92.	1.8	127
13	Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Materials Today Communications, 2019, 19, 319-335.	0.9	122
14	Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications. ACS Biomaterials Science and Engineering, 2020, 6, 58-70.	2.6	120
15	Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. Journal of Materials Chemistry B, 2017, 5, 4660-4672.	2.9	100
16	Advancement of wound care from grafts to bioengineered smart skin substitutes. Progress in Biomaterials, 2014, 3, 103-113.	1.8	98
17	Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. Materials Science and Engineering C, 2021, 118, 111519.	3.8	94
18	3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Translational Oncology, 2021, 14, 101015.	1.7	90

ROBIN AUGUSTINE

#	Article	IF	CITATIONS
19	Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Advanced Drug Delivery Reviews, 2016, 103, 105-120.	6.6	87
20	Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. International Journal of Biological Macromolecules, 2020, 162, 1849-1861.	3.6	83
21	Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 163.	1.7	80
22	Electrospun poly(εâ€caprolactone)â€based skin substitutes: <scp><i>I</i></scp> <i>n vivo</i> evaluation of wound healing and the mechanism of cell proliferation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1445-1454.	1.6	78
23	A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Applied Nanoscience (Switzerland), 2014, 4, 809-818.	1.6	74
24	<p>CTGF Loaded Electrospun Dual Porous Core-Shell Membrane For Diabetic Wound Healing</p> . International Journal of Nanomedicine, 2019, Volume 14, 8573-8588.	3.3	70
25	Effect of zinc oxide nanoparticles on the <i>in vitro</i> degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 28-37.	1.8	69
26	Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. International Journal of Biological Macromolecules, 2019, 136, 901-910.	3.6	68
27	Cerium Oxide Nanoparticle-Loaded Gelatin Methacryloyl Hydrogel Wound-Healing Patch with Free Radical Scavenging Activity. ACS Biomaterials Science and Engineering, 2021, 7, 279-290.	2.6	65
28	Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. Journal of Drug Delivery Science and Technology, 2020, 56, 101516.	1.4	63
29	Metal Oxide Nanoparticles as Versatile Therapeutic Agents Modulating Cell Signaling Pathways: Linking Nanotechnology with Molecular Medicine. Applied Materials Today, 2017, 7, 91-103.	2.3	62
30	Novel drug delivery systems based on triaxial electrospinning based nanofibers. Reactive and Functional Polymers, 2021, 163, 104895.	2.0	62
31	Cell Adhesion on Polycaprolactone Modified by Plasma Treatment. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	61
32	Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications. Materials Science and Engineering C, 2019, 103, 109801.	3.8	60
33	Dose-Dependent Effects of Gamma Irradiation on the Materials Properties and Cell Proliferation of Electrospun Polycaprolactone Tissue Engineering Scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 526-533.	1.8	57
34	Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. Journal of Clinical Medicine, 2020, 9, 3372.	1.0	54
35	Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomaterialia, 2018, 74, 344-359.	4.1	52
36	An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Engineering and Regenerative Medicine, 2015, 12, 12-19.	1.6	48

ROBIN AUGUSTINE

#	Article	IF	CITATIONS
37	Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Progress in Biomaterials, 2016, 5, 223-235.	1.8	48
38	Nanoceria Can Act as the Cues for Angiogenesis in Tissue-Engineering Scaffolds: Toward Next-Generation in Situ Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 4338-4353.	2.6	48
39	Clogging-Free Electrospinning of Polycaprolactone Using Acetic Acid/Acetone Mixture. Polymer-Plastics Technology and Engineering, 2016, 55, 518-529.	1.9	43
40	Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. International Journal of Pharmaceutics, 2019, 559, 420-426.	2.6	43
41	Titanium Nanorods Loaded PCL Meshes with Enhanced Blood Vessel Formation and Cell Migration for Wound Dressing Applications. Macromolecular Bioscience, 2019, 19, e1900058.	2.1	41
42	Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF–TrFE)/ZnO Nanocomposites. Nano-Micro Letters, 2016, 8, 282-290.	14.4	40
43	Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Biomedicine and Pharmacotherapy, 2022, 149, 112707.	2.5	35
44	Therapeutic angiogenesis: From conventional approaches to recent nanotechnology-based interventions. Materials Science and Engineering C, 2019, 97, 994-1008.	3.8	34
45	Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomedicine and Pharmacotherapy, 2021, 138, 111425.	2.5	33
46	MXene Nanosheets May Induce Toxic Effect on the Early Stage of Embryogenesis. Journal of Biomedical Nanotechnology, 2020, 16, 364-372.	0.5	33
47	Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chemico-Biological Interactions, 2022, 351, 109738.	1.7	33
48	Gentamicin Loaded Electrospun Poly(ε-Caprolactone)/TiO ₂ Nanocomposite Membranes with Antibacterial Property against Methicillin Resistant <i>Staphylococcus aureus</i> . Polymer-Plastics Technology and Engineering, 2016, 55, 1785-1796.	1.9	30
49	Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 96.	1.7	29
50	Development of nitric oxide releasing visible light crosslinked gelatin methacrylate hydrogel for rapid closure of diabetic wounds. Biomedicine and Pharmacotherapy, 2021, 140, 111747.	2.5	27
51	Active agents loaded extracellular matrix mimetic electrospun membranes for wound healing applications. Journal of Drug Delivery Science and Technology, 2021, 63, 102500.	1.4	26
52	Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Advances in Colloid and Interface Science, 2021, 294, 102457.	7.0	26
53	Electrospun polylactic acid/date palm polyphenol extract nanofibres for tissue engineering applications. Emergent Materials, 2019, 2, 141-151.	3.2	23
54	Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomedical Materials (Bristol), 2021, 16, 042003.	1.7	19

ROBIN AUGUSTINE

#	Article	IF	CITATIONS
55	NiFe ₂ O ₄ /poly(ethylene glycol)/lipid–polymer hybrid nanoparticles for anti-cancer drug delivery. New Journal of Chemistry, 2020, 44, 18162-18172.	1.4	17
56	Stromal cell-derived factor loaded co-electrospun hydrophilic/hydrophobic bicomponent membranes for wound protection and healing. RSC Advances, 2021, 11, 572-583.	1.7	17
57	Carboxymethylcellulose hybrid nanodispersions for edible coatings with potential anti-cancer properties. International Journal of Biological Macromolecules, 2020, 157, 350-358.	3.6	16
58	Gelatin-methacryloyl hydrogel based <i>inÂvitro</i> blood–brain barrier model for studying breast cancer-associated brain metastasis. Pharmaceutical Development and Technology, 2021, 26, 490-500.	1.1	16
59	Bioengineered microfluidic blood-brain barrier models in oncology research. Translational Oncology, 2021, 14, 101087.	1.7	16
60	Multimodal applications of phytonanoparticles. , 2020, , 195-219.		14
61	Monitoring and separation of food-borne pathogens using magnetic nanoparticles. , 2016, , 271-312.		10
62	A novel in ovo model to study cancer metastasis using chicken embryos and GFP expressing cancer cells. Bosnian Journal of Basic Medical Sciences, 2020, 20, 140-148.	0.6	7
63	Tissue Engineering: Principles, Recent Trends and the Future. , 2016, , 31-82.		6
64	Graphene Oxide Loaded Hydrogel for Enhanced Wound Healing in Diabetic Patients. , 2019, 2019, 3943-3946.		6
65	Reactive Nitrogen Species Releasing Hydrogel for Enhanced Wound Healing. , 2019, 2019, 3939-3942.		5
66	Crosslinking Strategies to Develop Hydrogels for Biomedical Applications. Gels Horizons: From Science To Smart Materials, 2021, , 21-57.	0.3	5
67	Microbial Barrier Property and Blood Compatibility Studies of Electrospun Poly-Æ1-Caprolactone/ Zinc Oxide Nanocomposite Scaffolds. Journal of Siberian Federal University - Biology, 2017, 10, 226-236.	0.2	5
68	Electrospinning and Three-Dimensional (3D) Printing for Biofabrication. , 2022, , 555-604.		5
69	Spatial mapping of cancer tissues by OMICS technologies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188663.	3.3	4
70	Cellular response to nanobiomaterials. , 2020, , 473-504.		2
71	Effect Of Compatibilizer: Filler Ratio On The Tensile, Barrier And Thermal Properties Of polyethylene Composite Films Manufactured From Natural Fiber And Nanoclay. , 2016, , 89-108.		2
72	Cisplatin encapsulated nanoparticles from polymer blends for anti-cancer drug delivery. New Journal of Chemistry, 2022, 46, 5819-5829.	1.4	2

#	Article	IF	CITATIONS
73	Growth factor releasing core-shell polymeric scaffolds for tissue engineering applications. , 2019, 2019, 1066-1069.		1
74	Electrospun polymer nanocomposite scaffolds containing metal oxide nanoparticles for diabetic wound healing. , 2018, , .		0
75	Nanomedicine: From Concept to Reality. , 2016, , 1-30.		0
76	Conjugation of CTGF with Reduced Graphene Oxide Nanoparticles for the Development of Wound Healing Hydrogel Patch. , 2020, , .		0